zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the extended linear complementarity problem. (English) Zbl 0853.90109
Summary: For the extended linear complementarity problem [see O. L. Mangasarian and J. S. Pang, SIAM J. Matrix Anal. Appl. 16, No. 2, 359-368 (1995; Zbl 0835.90103)], we introduce and characterize column-sufficiency, row-sufficiency and P-properties. These properties are then specialized to the vertical, horizontal and mixed linear complementarity problems.
MSC:
90C33Complementarity and equilibrium problems; variational inequalities (finite dimensions)
References:
[1]K.P. Bennett and O.L. Mangasarian, Bilinear separation of two sets inn-space,Computational Optimization and Applications 2 (1993) 207–228. · Zbl 0795.90060 · doi:10.1007/BF01299449
[2]S.C. Billups and M.C. Ferris, Convergence of infeasible interior-point algorithms from arbitrary starting points,SIAM Journal on Optimization, (1996), forthcoming.
[3]R.W. Cottle, J.-S. Pang and R.E. Stone,The Linear Complementarity Problem (Academic Press, Boston, MA, 1992).
[4]B. De Schutter and B. De Moor, The extended linear complementarity problem,Mathematical Programming 71 (3) (1995) 289–325.
[5]B.C. Eaves and C.E. Lemke, Equivalence of LCP and PLS,Mathematics of Operations Research 6 (1981) 475–484. · Zbl 0515.90073 · doi:10.1287/moor.6.4.475
[6]M.S. Gowda, On reducing a monotone horizontal LCP to an LCP,Applied Mathematics Letters 8 (1994) 97–100. · Zbl 0813.65092 · doi:10.1016/0893-9659(94)00118-V
[7]M.S. Gowda and J.-S. Pang, Stability analysis of variational inequalities and nonlinear complementarity problems, via the mixed linear complementarity problem and degree theory,Mathematics of Operations Research 19 (1994) 831–879. · Zbl 0821.90114 · doi:10.1287/moor.19.4.831
[8]M.S. Gowda and R. Sznajder, The generalized order linear complementarity problem,SIAM Journal on Matrix Analysis and Applications 15 (1994) 779–795. · Zbl 0831.90112 · doi:10.1137/S0895479892237859
[9]O. Güler, Generalized linear complementarity problems,Mathematics of Operations Research 20 (1995) 441–448. · Zbl 0837.90113 · doi:10.1287/moor.20.2.441
[10]O.L. Mangasarian,Nonlinear Programming (McGraw-Hill, New York, 1969).
[11]O.L. Mangasarian and J.-S. Pang, The extended linear complementarity problem,SIAM Journal on Matrix Analysis and Applications 16 (1995) 359–368. · Zbl 0835.90103 · doi:10.1137/S0895479893262734
[12]R.D.C. Monteiro and T. Tsuchiya, Limiting behavior of the derivatives of certain trajectories associated with a monotone horizontal linear complementarity problem,Mathematics of Operations Research (1996), forthcoming.
[13]R.T. Rockafellar,Convex Analysis, (Princeton University Press, Princeton, NJ, 1970).
[14]R. Sznajder and M.S. Gowda, Generalizations ofP 0- andP-properties; extended vertical and horizontal LCPs,Linear Algebra and its Applications 223/224 (1995) 695–715. · Zbl 0835.90104 · doi:10.1016/0024-3795(93)00184-2
[15]R.H. Tütüncü and M.J. Todd, Reducing horizontal linear complementarity problem,Linear Algebra and its Applications 223/224 (1995) 716–720. · Zbl 0835.90106 · doi:10.1016/0024-3795(94)00147-6
[16]Y. Ye. A fully polynomial-time approximation algorithm for computing a stationary point of the general linear complementarity problem,Mathematics of Operations Research 18 (1993) 334–345. · Zbl 0791.90060 · doi:10.1287/moor.18.2.334
[17]Y. Zhang, On the convergence of a class of infeasible interior-point methods for the horizontal linear complementarity problem,SIAM Journal on Optimization 4 (1994) 208–227. · Zbl 0803.90092 · doi:10.1137/0804012