zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Kernel smoothing. (English) Zbl 0854.62043
Monographs on Statistics and Applied Probability. 60. London: Chapman & Hall. xii, 212 p. £25.00 (1995).

Kernel smoothing refers to a general methodology for recovery of the underlying structure in data sets without the imposition of a parametric model. The main goal of this book is to develop the reader’s intuition and mathematical skills required for a comprehensive understanding of kernel smoothing, and hence smoothing problems in general. To describe the principles, applications and analysis of kernel smoothers the authors concentrate on the simplest nonparametric curve estimation setting, namely density and regression estimation. Special attention is given to the problem of choosing the smoothing parameter.

For the study of the book only a basic knowledge of statistics, calculus and matrix algebra is assumed. In its role as an introductory text this book does make some sacrifices. It does not completely cover the vast amount of research in the field of kernel smoothing. But the bibliographical notes at the end of each chapter provide a comprehensive, up-to-date reference for those readers which are more familiar with the topic.

62G07Density estimation
62-01Textbooks (statistics)
62G20Nonparametric asymptotic efficiency
R; KernSmooth