zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global attractors for the three-dimensional Navier-Stokes equations. (English) Zbl 0855.35100

The main purpose of this paper is to show that the weak solutions of the Navier-Stokes equations on any bounded, smooth three-dimensional domain Ω 3 have a global attractor for any positive value of viscosity. The proof of this result is based on a new point of view for the construction of the semiflow generated by these equations.

The paper first presents the essentials for the theory of semiflows on a perfect space. Then it turns out that for a suitable forcing function f, the weak solutions of the Navier-Stokes equations can be identified with the restriction of a semiflow on a Fréchet space to an appropriate invariant subset W. By using the general theory of global attractors for semiflows on metric spaces, general sufficient conditions are derived for the semiflows to have a global attractor. Thus, two issues of possible nonuniqueness of the weak solutions and the possible lack of global regularity of the strong solutions are bypassed. It is also shown that, under additional assumptions, this global attractor consists entirely of strong solutions.

The time dependent issue (the forcing function f is time dependent) is addressed finally. In order to develop a dynamical theory to handle this situation, the traditional approach of skew product flows is made use of.


MSC:
35B41Attractors (PDE)
35Q30Stokes and Navier-Stokes equations
37L30Attractors and their dimensions, Lyapunov exponents
35D05Existence of generalized solutions of PDE (MSC2000)
References:
[1]A. V. Babin and G. R. Sell (1995). Symmetry properties of attractors for time-dependent partial differential equations (preprint).
[2]A. V. Babin and M. I. Vishik (1983). Regular attractors of semigroups of evolutionary equations.J. Math. Pures Appl. 62, 441–491.
[3]A. V. Babin and M. I. Vishik (1989).Attractors of Evolution Equations, Nauka, Moscow (Russian).
[4]J. E. Billotti and J. P. LaSalle (1971). Dissipative periodic processes.Bull. Am. Math. Soc. 77, 1082–1088. · Zbl 0274.34061 · doi:10.1090/S0002-9904-1971-12879-3
[5]C. C. Conley (1978).Isolated Invariant Sets and the Morse Index, CBMS Regional Conference, Vol. 89, Am. Math. Soc., Providence.
[6]P. Constantin and C. Foias (1988).Navier-Stokes Equations, University of Chicago Press, Chicago.
[7]P. Constantin, C. Foias, and R. Temam (1985).Attractors representing turbulent flows. Memoirs Am. Math. Soc. 53, No. 314.
[8]N. Dunford and J. T. Schwartz (1958).Linear Operators, Parts 1, 2, and 3, Wiley Interscience, New York.
[9]C. Foias and R. Temam (1987). The connection between the Navier-Stokes equations, dynamical systems, and turbulence theory. InDirections in Partial Differential Equations, Academic Press, New York, pp. 55–73.
[10]J. K. Hale (1988).Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, Vol. 25, Am. Math. Soc., Providence.
[11]E. Hille and R. S. Phillips (1957).Functional Analysis and Semigroups, Am. Math. Soc. Colloq., Vol. 31, Am. Math. Soc., Providence.
[12]E. Hopf (1951). über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen.Math. Nachr. 4, 213–231.
[13]J. L. Kelley and I. Namioka (1963).Linear Topological Spaces, Van Nostrand, Princeton, NJ.
[14]M. Kwak (1992). Finite dimensional inertial forms for the 2D Navier-Stokes equations.Indiana J. Math. 41, 927–981. · Zbl 0765.35034 · doi:10.1512/iumj.1992.41.41051
[15]M. Kwak, G. R. Sell, and Z. Shao (1994). Finite dimensional structures for the Navier-Stokes equations on thin 3D domains (AHPCRC preprint).
[16]O. A. Ladyzhenskaya (1972). On the dynamical system generated by the Navier-Stokes equations, English translation.J. Soviet Math. 3, 458–479. · Zbl 0336.35081 · doi:10.1007/BF01084684
[17]O. A. Ladyzhenskaya (1991).Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge.
[18]J. Leray (1933). Etude de diverses équations intégrales nonlinéaires et de quelques problèmes que pose l’hydrodynamique.J. Math. Pures Appl. 12, 1–82.
[19]J. Leray (1934a). Essai sur les mouvements plans d’un liquide visqueux que limitent des parios.J. Math. Pures Appl. 13, 331–418.
[20]J. Leray (1934b). Sur le mouvement d’un liquide visqueux emplissant l’espace.Acta Math. 63, 193–248. · Zbl 02539174 · doi:10.1007/BF02547354
[21]J. L. Lions (1969).Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Gauthier-Villar, Paris.
[22]K. Maurin (1967).Methods of Hilbert Spaces, Inst Math., Polish Acad. Sci. Monogr. Mat., VoL 45, Polish Scientific, Warsaw.
[23]C. L. M. H. Navier (1827). Mémoire sur les lois du mouvement des fluides.Mem. Acad. Sci. Inst. France 6, 38–440.
[24]A. Pazy (1983).Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Vol. 44, Springer-Verlag, New York.
[25]S. D. Poisson (1831). Mémoire sur les équations générales de l’équilibre et du mouvement des corps solides élastique et des fluides.J. Ecole Polytechn. 13, 1–174.
[26]G. Raugel and G. R. Sell (1993a). Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions (AHPCRC preprint 90-04).J. Am. Math. Soc. 6, 503–568.
[27]G. Raugel and G. R. Sell (1993b). Navier-Stokes equations on thin 3D domains. II. Global regularity of spatially periodic solutions (AHPCRC preprint 92-062), Proc. College de France.
[28]G. Raugel and G. R. Sell (1993c). Navier-Stokes equations on thin 3D domains. III. Global and local attractors. InTurbulence in Fluid Flows: A Dynamical Systems Approach, IMA Volumes in Mathematics and Its Applications, Vol. 55, pp. 137–163.
[29]R. J. Sacker and G. R. Sell (1977). Lifting properties in skew-product flows with applications to differential equations.Memoir Am. Math. Soc. 190.
[30]R. J. Sacker and G. R. Sell (1994). Dichotomies for linear evolutionary equations in Banach spaces (IMA preprint 838).J. Diff. Eq.
[31]G. R. Sell (1967a). Nonautonomous differential equations and topological dynamics. I. The basic theory.Trans. Am. Math. Soc. 127, 241–262.
[32]G. R. Sell (1967b). Nonautonomous differential equations and topological dynamics. II. Limiting equations.Trans. Am. Math. Soc. 127, 263–283. · doi:10.1090/S0002-9947-1967-0212314-4
[33]G. R. Sell (1973). Differential equations without uniqueness and classical topological dynamics.J. Diff. Eq. 14, 42–56. · Zbl 0259.54033 · doi:10.1016/0022-0396(73)90075-2
[34]G. R. Sell and Y. You (1994). Dynamical systems and global attractors (AHPCRC preprint).
[35]G. R. Sell and Y. You (1995).Dynamics of Evolutionary Equations, Lecture Notes.
[36]G. G. Stokes (1845). On the theories of the internal friction of fluids in motion.Trans. Cambridge Phil. Soc. 8, 287–319.
[37]R. Temam (1977).Navier-Stokes Equations, North-Holland, Amsterdam.
[38]R. Temam (1983).Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS Regional Conference Series, No. 41, SIAM, Philadelphia.
[39]R. Temam (1988).Infinite Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, Vol. 68, Springer-Verlag, New York.
[40]M. I. Vishik (1992).Asymptotic Behavior of Solutions of Evolution Equations, Accademia Nazionale dei Lincei, Cambridge University Press, Cambridge.
[41]W. von Wahl (1985).The Equations of Navier-Stokes and Abstract Parabolic Problems, Vieweg and Sohn, Braunschweig.