zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Constraining inverse Stefan design problems. (English) Zbl 0864.76089
A new formulation possessing stable numerical characteristics is presented for inverse Stefan design processes. In such processes, the goal is to design transient boundary conditions which produce the desired interfacial surface motion. This subclass of mildly ill-posed mathematical problems is amenable to the proposed solution methodology. This investigation presents a fixed-front differential formulation from which a weighted residual statement is developed. Orthogonal collocation is used to obtain numerical results illustrating the merit of imposing physical constraints in the mathematical model.
76T99Two-phase and multiphase flows
80A22Stefan problems, phase changes, etc.
35R30Inverse problems for PDE
[1]Zabaras, N.,Inverse finite element techniques for the analysis of solidification processes, Int. J. Num. Meth. Engng.,29, 1569-1587 (1990). · doi:10.1002/nme.1620290713
[2]Zabaras, N., Mukherjee, S. and Richmond, O.,An analysis of inverse heat transfer problems with phase changes using an integral method, J. Heat Transfer,110, 554-561 (1988). · doi:10.1115/1.3250528
[3]Zabaras, N. and Ruan, Y.,A deforming finite element method analysis of inverse Stefan problems, Int. J. Num. Meth. Engng.,28, 295-313 (1989). · Zbl 0678.65088 · doi:10.1002/nme.1620280205
[4]Zabaras, N. and Mukherjee, S.,An analysis of solidification problems by the boundary element method, Int. J. Num. Meth. Engng.,24, 1879-1900 (1987). · Zbl 0632.65128 · doi:10.1002/nme.1620241006
[5]Zabaras, N., Ruan, Y. and Richmond, O.,Design of two-dimensional Stefan processes with desired freezing front motions, Num. Heat Transfer, Part B,21, 307-325 (1992). · doi:10.1080/10407799208944907
[6]Zabaras, N. and Kang, S.,On the solution of an ill-posed design solidification problem using minimization techniques in finite- and infinite-dimensional function spaces, Int. J. Num. Meth. Engng.,36, 3973-3990 (1993). · Zbl 0805.76035 · doi:10.1002/nme.1620362304
[7]Beck, J. V., Blackwell, B. and St. Clair, C. A.,Inverse Heat Conduction, Wiley, New York (1985).
[8]Ozisik, M. N.,Heat Conduction, 2nd ed., Wiley, New York 1993.
[9]Frankel, J. I.,A boundary integral formulation to an inverse solidification design problem, BEM 17, University of Wisconsin 1995.
[10]Finlayson, B. A.,The Method of Weighted Residuals and Variational Principles, Academic Press, New York 1972.
[11]Frankel, J. I.,Cumulative variable formulation for transient conductive and radiative transport in participating media, AIAA J. Thermophys. Heat Transfer,9, no. 2, 210-218 (1995). · doi:10.2514/3.648
[12]Katz, M. A. and Rubinsky, B.,An inverse finite element technique to determine the change of phase interface location in one-dimensional melting problems, Num. Heat Transfer,7, 269-283 (1984). · doi:10.1080/01495728408961825
[13]Rivlin, T. J.,The Chebyshev Polynomials, Wiley, New York 1974.
[14]Delves, L. M. and Mohamad, J. L.,Computational Methods for Integral Equations, Cambridge University Press, Cambridge 1988.