zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Nonconvex differential calculus for infinite-dimensional multifunctions. (English) Zbl 0866.49024
The authors start from a notion of normal cone built by means of Fréchet ε-normals and a procedure of sequential upper limit. Then they build a related notion of coderivative for a multifunction F from a Banach space X to another Banach space Y. When X and Y are both Asplund spaces, such a notion turns out to have a rich calculus. Their approach should be compared with that of A. D. Ioffe [Mathematika 36, No. 1, 1-38 (1989; Zbl 0713.49022)], which is otherwise based on topological upper limits. In the particular case of an extended real-valued function φ:X ¯, corresponding notions have been introduced by the same authors in J. Convex Anal. 2, No. 1-2, 211-227 (1995; Zbl 0838.49013).
MSC:
49J52Nonsmooth analysis (other weak concepts of optimality)
58C06Set-valued and function-space valued mappings on manifolds
58C20Differentiation theory (Gateaux, Fréchet, etc.) on manifolds
References:
[1]AubinJ.-P.: Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions, in: L.Nachbin (ed.), Mathematical Analysis and Applications, Academic Press, New York, 1981, pp. 159-229.
[2]AubinJ.-P.: Lipschitz behavior of solutions to convex minimization problems, Math. Oper. Res. 9 (1984), 87-111. · Zbl 0539.90085 · doi:10.1287/moor.9.1.87
[3]AubinJ.-P. and FrankowskaH.: Set-Valued Analysis, Birkhäuser, Boston, 1990.
[4]BorweinJ. M.: Epi-Lipschitz-like sets in Banach spaces: theorems and examples, Nonlinear Anal. 11 (1987), 1207-1217. · Zbl 0639.49014 · doi:10.1016/0362-546X(87)90008-3
[5]BorweinJ. M., and FitzpatrickS. P.: Weak-star sequential compactness and bornological limit derivatives, Convex Anal. 2 (1995), 59-68.
[6]BorweinJ. M. and StrojwasH. M.: Tangential approximations, Nonlinear Anal. 9 (1985), 1347-1366. · Zbl 0613.49016 · doi:10.1016/0362-546X(85)90095-1
[7]BorweinJ. M. and ZhuangD. M.: Vefiable necessary and sufficient conditions for regularity of set-valued and single-valued maps. J. Math. Anal. Appl. 134 (1988), 441-459. · Zbl 0654.49004 · doi:10.1016/0022-247X(88)90034-0
[8]ClarkeF. H.: Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
[9]Dontchev, A. L. and Rockafellar, R. T.: Characterizations of strong regularity for variational inequalities over polyhedral convex sets, SIAM J. Optim., to appear.
[10]EkelandI. and LebourgG.: Generic Fréchet differentiability and perturbed optimization problems in Banach spaces, Trans. Amer. Math. Soc. 224 (1976), 193-216.
[11]FabianM.: Subdifferentiallity and trustworthiness in the light of a new variational principle of Borwein and Preiss, Acta Univ. Carolinae 30 (1989), 51-56.
[12]GinsburgB. and IoffeA. D.: The maximum principle in optimal control of systems governed by semilinear equations, in: B. S.Mordukhovich and H. J.Sussmann (eds), Nonsmooth Analysis and Geometric Methods in Deterministic Optimal Control, IMA Volumes in Mathematics and its Applications 78, Springer-Verlag, New York, 1996, pp. 81-110.
[13]IoffeA. D.: Approximate subdifferentials and applications. I: The finite dimensional theory, Trans. Amer. Math. Soc. 281 (1984) 389-416.
[14]IoffeA. D.: Approximate subdifferential and applications III: The metric theory, Mathematika 36 (1989), 1-38. · Zbl 0713.49022 · doi:10.1112/S0025579300013541
[15]IoffeA. D.: Proximal analysis and approximate subdifferentials, J. London Math. Soc. 41 (1990), 175-192. · Zbl 0725.46045 · doi:10.1112/jlms/s2-41.1.175
[16]JouraniA. and ThibaultL.: A note of Fréchet and approximate subdifferentials of composite functions, Bull. Austral. Math. Soc. 49 (1994), 111-116. · Zbl 0806.49014 · doi:10.1017/S0004972700016142
[17]JouraniA. and ThibaultL.: Verifiable conditions for openness and regularity of multivalued mappings in Banach spaces, Trans. Amer. Math. Soc. 347, (1995), 1255-1268. · Zbl 0827.54013 · doi:10.2307/2154809
[18]KrugerA. Y.: Properties of generalized differentials, Siberian Math J. 26 (1985), 822-832. · Zbl 0596.46038 · doi:10.1007/BF00969103
[19]KrugerA. Y. and MordukhovichB. S.: Extremal points and the Euler equation in nonsmooth optimization, Dokl. Akad. Nauk BSSR 24 (1980), 684-687.
[20]Kruger, A. Y. and Mordukhovich, B. S.: Generalized normals and derivatives, and necessary optimality conditions in nondifferentiable programming, Part I: Depon. VINITI No. 408-80; part II: Depon. VINITI No. 494-80, Moscow, 1980.
[21]LangS.: Real and Functional Analysis, 3rd edn, Springer-Verlag, New York, 1993.
[22]LeachE. B.. A note on inverse function theorem, Proc. Amer. Math. Soc. 12 (1961), 694-697. · doi:10.1090/S0002-9939-1961-0126146-9
[23]LoewenP. D.: Limits of Fréchet normals in nonsmooth analysis, in: A. D.Ioffe et al. (eds), Optimization and Nonlinear Analysis, Pitman Research Notes in Math. Series No. 244, Longman, Harlow, Essex, 1992, pp. 178-188.
[24]Loewen, P. D. and Rockafellar, R. T.: New necesary conditions for the generalized problem of Bolza, SIAM J. Control Optim., to appear.
[25]MordukhovichB. S.: Maximum principle in problems of time optimal control with nonsmooth constraints, J. Appl. Math. Mech. 40, (1976), 960-969. · Zbl 0362.49017 · doi:10.1016/0021-8928(76)90136-2
[26]MordukhovichB. S.: Metric approximations and necessary optimality conditions for general classes of nonsmooth extremal problems, Soviet Math. Dokl. 22 (1980) 526-530.
[27]MordukhovichB. S.: Approximation Methods in Problems of Optimization and Control, Nauka, Moscow, 1988.
[28]MordukhovichB. S.: Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions. Trans. Amer. Math. Soc. 340 (1993), 1-35. · Zbl 0791.49018 · doi:10.2307/2154544
[29]MordukhovichB. S.: Stability theory for parametric generalized equations and variational inequalities via nonsmooth analysis, Trans. Amer. Math. Soc. 343 (1994), 609-658. · Zbl 0826.49008 · doi:10.2307/2154734
[30]MordukhovichB. S.: Generalized differential calculus for nonsmooth and set-valued mappings, J. Math. Anal. Appl. 183 (1994), 250-288. · Zbl 0807.49016 · doi:10.1006/jmaa.1994.1144
[31]MordukhovichB. S.: Discrete approximations and refined Euler-Lagrange conditions for nonconvex differential inclusions, SIAM J. Control Optim. 33 (1995), 882-915. · Zbl 0844.49017 · doi:10.1137/S0363012993245665
[32]MordukhovichB. S. and ShaoY.: Differential characterizations of covering, metric regularity, and Lipschitzian properties of multifunctions between Banach spaces, Nonlinear Anal. 24 (1995), 1401-1424. · Zbl 0863.47030 · doi:10.1016/0362-546X(94)00256-H
[33]MordukhovichB. S. and ShaoY.: On nonconvex subdifferential calculus in Banach spaces, J. Convex Anal. 2 (1995), 211-227.
[34]MordukhovichB. S. and ShaoY.: Extremal characterizations of Asplund spaces, Proc. Amer. Math. Soc. 124 (1996), 197-205. · Zbl 0849.46010 · doi:10.1090/S0002-9939-96-03049-3
[35]MordukhovichB. S. and ShaoY.: Nonsmooth sequential analysis in Asplund spaces, Trans. Amer. Math. Soc. 348 (1996), 1235-1280. · Zbl 0881.49009 · doi:10.1090/S0002-9947-96-01543-7
[36]Mordukhovich, B. S. and Shao, Y.: Stability of set-valued mappings in infinite dimensions: point criteria and applications, SIAM J. Control Optim., to appear (Preprint, November 1994).
[37]Mordukhovich, B. S. and Shao, Y.: Fuzzy calculus for coderivatives of multifunctions, Nonlinear Anal., to appear (Preprint, August 1995).
[38]PenotJ.-P.: Metric regularity, openness and Lipschitzian behavior of multifunctions, Nonlinear Anal. 13 (1989), 629-643. · Zbl 0687.54015 · doi:10.1016/0362-546X(89)90083-7
[39]PhelpsR. R.: Convex Functions, Monotone Operators and differentiability, 2nd edn, Springer-Verlag, Berlin, 1993.
[40]RockafellarR. T.: Generalzied directional derivatives and subgradients of nonconvex functions, Can. J. Math. 32 (1980), 257-280. · Zbl 0447.49009 · doi:10.4153/CJM-1980-020-7
[41]RockafellarR. T.: Lipschitzian properties of multifunctions, Nonlinear Anal. 9 (1985), 867-885. · Zbl 0573.54011 · doi:10.1016/0362-546X(85)90024-0
[42]RockafellarR. T.: Maximal monotone relations and the second derivatives of nonsmooth functions, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 167-184.
[43]RockafellarR. T. Proto-differentiability of set-valued mappings and its applications in optimization, in: H.Attouch et al. (eds.), Analyse non linéaire, Gauthier-Villars, Paris, 1989, pp. 449-482.
[44]Rockafellar, R. T. and Wets, R. J.-B.: Variational Analysis, Springer-Verlag, New York, to appear.
[45]ThibaultL.: Subdifferentials of compactly Lipschitzian vector-valued functions, Ann. Mat. Pura Appl. 125 (1980), 157-192. · Zbl 0486.46037 · doi:10.1007/BF01789411
[46]ThibaultL.: On subdifferentials of optimal value functions, SIAM J. Control Optim. 29 (1991), 1019-1036. · Zbl 0734.90093 · doi:10.1137/0329056