zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Uniformity of rational points. (English) Zbl 0872.14017

Let K be a number field. A question addressed in this paper is the following: Given a family f:XB of curves defined over K, how does the set of K-rational points of the fibres vary with bB, and in particular, how does its cardinality behave as a function of b? This is equivalent to the following conjecture:

Uniformity conjecture. Let K be a number field and g2 an integer. Then there is a number B(K,g) such that for any smooth curve X of genus g defined over K, #X(K)B(K,g).

(Here X(K) denote the set of K-rational points of X.)– The main results of this paper is that the uniformity conjecture holds true if one assumes the validity of Lang’s conjectures about the distribution of rational points on higher dimensional varieties over number fields. First recall Lang’s conjectures.

Weak Lang conjecture. If X is a variety of general type defined over a number field K, then X(K) is not Zariski dense.

There is a stronger version of Lang’s conjecture.

Strong Lang conjecture. Let X be any variety of general type defined over a number field K. There exists a proper closed subvariety ΞX such that for any number field L containing K, the set of L-rational points of X lying outside Ξ is finite.

The results of arithmetic nature proved in this paper are as follows:

Theorem 1. (Uniform bound) If the weak Lang conjecture is true, then for every number field K and integer g2, there exists an integer B(K,g) such that no smooth curve of genus g defined over K has more than B(K,g) rational points.

If one further assumes the strong Lang conjecture, then the number B(K,g) depends only on g and not on K.

Theorem 2. (Universal generic bound) The strong Lang conjecture implies that for any g2, there exists an integer N(g) such that for any number field K there are only finitely many smooth curves of genus g defined over K with more than N(g) K-rational points.

The main geometric result of the paper provides varieties of general type to which one can apply Lang’s conjectures.

Theorem 3. (Correlation) Let f:XB be a proper morphism of integral varieties, whose general fiber is a smooth curve of genus at least 2. Then for n sufficiently large, X B n admits a dominant rational map h to a variety of general type W. Moreover, if X is defined over the number field K, then W and h are also defined over K.

Theorem 1 is proved assuming the weak Lang conjecture and theorem 3, and similarly theorem 2 is proved assuming the strong Lang conjecture and theorem 3. The proof of theorem 3 (correlation) forms the core of the paper taking up §2 to §5. Some examples are given: For instance, the asymptotic behaviour of B(K,g) for fixed K and varying g, and N(g): B(,g)8·g+12; and N(2)128 and N(3)72.

Then higher-dimensional cases are discussed.

Geometric Lang conjecture. If X is any variety of general type, then the union of all irreducible positive-dimensional subvarieties of X not of general type is a proper, closed subvariety ΞX (which is called Langian exceptional locus of X and denoted by Ξ X ).

Conjecture (H). (Correlation in higher dimensional cases) Let f:XB be an arbitrary morphism of integral varieties, whose general fiber is an integral variety of general type. Then for n0, X B n admits a dominant rational map h to a variety W of general type such that the restriction of h to a general fiber of f is generically finite.

One may ask: how the subvarieties ΞX vary with parameters? If one is given a family f:XB of varieties of general type, what can one say about the exceptional subvarieties Ξ b =Ξ X b of the fibres? This is answered in the following theorem.

Theorem 4. Assuming the geometric Lang conjecture and conjecture (H), there is a number D(d,k) such that for all projective varieties X of degree d or less and dimension k or less, the total degree of the Langian exceptional locus is deg(Ξ X )D(d,k).

Here the total degree of a variety is the sum of the degrees of its irreducible components.

Theorem 5. Assuming the weak Lang conjecture and conjecture (H) for families of symmetric squares of curves, there exists for every integer g and number field K a number B q (g,K) such that no non-hyperelliptic, non-bielliptic curve C of genus g defined over K has more than B q (g,K) points whose coordinates are quadratic over K. If we assume in addition the strong Lang conjecture, there exists for every integer g a number N q (g) such that for any number field K there are only finitely many non-hyperelliptic, non-bielliptic curves of genus g defined over K that have more than N q (g) points whose coordinates are quadratic over K.


MSC:
14G05Rational points
14H25Arithmetic ground fields (curves)
14H10Families, algebraic moduli (curves)