zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stability and delays in a predator-prey system. (English) Zbl 0873.34062

This paper considers the following system of delay differential equations

dN 1 dt=N 1 (t)[a 1 -b 1 N 1 (t-τ)-c 1 N 2 (t-σ)],dN 2 dt=N 2 (t)[-a 2 +c 2 N 1 (t-σ)-b 2 N 2 (t)],

which models a predator-prey Lotka-Volterra system, with N 1 as the density of prey and N 2 as the predator, a 1 , b 1 and the c 1 being positive constants. The delay σ in the first equation is justified by the author by “the fact that predators cannot hunt prey when the predators are infants”, while in the second equation it corresponds to the time it takes for the predator to transform the prey into predator biomass. As noted by the author, there is no reason that the time to hunting maturity be the same as the time to predator biomass production: this choice is just made for simplicity. τ corresponds to delay in the negative feedback of the prey. Under some restrictions on the size of the delays, it is shown that the unique positive equilibrium is locally asymptotically stable. Under further restrictions on the delays, global asymptotic stability is proved. The proof is done by constructing a Lyapunov function, for the linearized equation first, then for the whole equation. The paper follows a previous work by W. Wang and Z. Ma [J. Math. Anal. Appl. 158, No. 1, 256-268 (1991; Zbl 0731.34085)]. The paper by Wang and Ma allows for more general delays. On the other hand, it only deals with uniform persistence, and proves that under the assumption on the coefficients of the system ensuring global asymptotic stability of the positive equilibrium of the system without delays, uniform persistence holds independent on the delays. Finally, a wrong statement, appeared in a paper by K. N. Murty and M. A. S. Srinivas [J. Math. Anal. Appl. 158, No. 2, 333-341 (1991; Zbl 0725.92025)], is pointed out and corrected.

Reviewer: O.Arino (Pau)

MSC:
34K20Stability theory of functional-differential equations
92D25Population dynamics (general)