zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The algebra and geometry of Steiner and other quadratically parametrizable surfaces. (English) Zbl 0875.68860
Summary: Quadratically parametrizable surfaces (x 1 ,x 2 ,x 3 ,x 4 )=(ϕ 1 (𝐮),ϕ 2 (𝐮),ϕ 3 (𝐮),ϕ 4 (𝐮)) where ϕ k are homogeneous functions are studied in 3 (). These correspond to rationally parametrizable surfaces in 3 . All such surfaces of order greater than two are completely catalogued and described. The geometry of the parametrizations as well as the geometry of the surfaces are revealed by the use of basic matrix algebra. The relationship of these two geometries is briefly discussed. The presentation is intended to be accessible to applied mathematicians and does not presume a knowledge of algebraic geometry.
MSC:
68U05Computer graphics; computational geometry