zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The relationship between fractional calculus and fractals. (English) Zbl 0877.28009

Summary: The general relationship between fractional calculus and fractals is explored. Based on prior investigations dealing with random fractal processes, the fractal dimension of a function is shown to be a linear function of the order of fractional integro-differentiation. Emphasis is placed on the proper application of fractional calculus to the function of the random fractal, as opposed to the trail. For fractional Brownian motion, the basic relations between the spectral decay exponent, Hurst exponent, fractal dimension of a function and the trail, and the order of the fractional integro-differentiation are developed.

Based on an understanding of fractional calculus applied to random fractal functions, consideration is given to an analogous application to deterministic or nonrandom fractals. The concept of expressing each coordinate of a deterministic fractal curve as a “pseudo-time” series is investigated. Fractional integro-differentiation of such series is numerically carried out for the case of quadric Koch curves. The resulting time series produces self-similar patterns with fractal dimensions which are linear functions of the order of the fractional integro-differentiation. These curves are assigned the name, fractional Koch curves. The general conclusion is reached that fractional calculus can be used to precisely change or control the fractal dimension of any random or deterministic fractal with coordinates which can be expressed as functions of one independent variable, which is typically time (or pseudo-time).


MSC:
28A80Fractals
26A33Fractional derivatives and integrals (real functions)