zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Hopf bifurcation in epidemic models with a latent period and nonpermanent immunity. (English) Zbl 0877.92023

Summary: Some SEIRS epidemiological models with vaccination and temporary immunity are considered. First of all, previously published work is reviewed. In the next section, a general model with a constant contact rate and a density-dependent death rate is examined. The model is reformulated in terms of the proportions of susceptible, incubating, infectious, and immune individuals. Next the equilibrium and stability properties of this model are examined, assuming that the average duration of immunity exceeds the infectious period. There is a threshold parameter R 0 and the disease can persist if and only if R 0 exceeds one. The disease-free equilibrium always exists and is locally stable if R 0 <1 and unstable if R 0 >1. Conditions are derived for the global stability of the disease-free equilibrium. For R 0 >1, the endemic equilibrium is unique and locally asymptotically stable.

For the full model dealing with numbers of individuals, there are two critical contact rates. These give conditions for the disease, respectively, to drive a population which would otherwise persist at a finite level or explode to extinction and to cause a population that would otherwise explode to be regulated at a finite level. If the contact rate β(N) is a monotone increasing function of the population size, then we find that there are now three threshold parameters which determine whether or not the disease can persist proportionally. Moreover, the endemic equilibrium need no longer be locally asymptotically stable. Instead stable limit cycles can arise by supercritical Hopf bifurcation from the endemic equilibrium as this equilibrium loses its stability. This is confirmed numerically.

34D99Stability theory of ODE