zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On close relations of local likelihood density estimation. (English) Zbl 0882.62034
Summary: Recent papers of J. B. Copas [J. R. Stat. Soc., Ser. B 57, No. 1, 221-235 (1995; Zbl 0812.62025)], N. L. Hjort and M. C. Jones [Ann. Stat. 24, No. 4, 1619-1647 (1996; Zbl 0867.62030)] and C. R. Loader [ibid. 1602-1618 (1996; Zbl 0867.62034)] have developed closely related methods for “local likelihood” density estimation. In various places, however, a more “simple-minded” and explicit analogue of local polynomial fitting in regression has been proposed for density estimation. By introducing the usual kind of binning procedure into Hjort and Jones’ method, it is shown how the more and less sophisticated versions can be reconciled. Also, we attempt to understand better the role of the attractive subclass of local likelihood methodology proposed by Loader. Finally, we look at a further subset of methods and make some theoretical comparisons between members of this class.
MSC:
62G07Density estimation
Software:
KernSmooth
References:
[1]Aerts, M., Augustyns, I. and Janssen, P. (1996). Smoothing sparse multinomial data using local polynomial fitting. (to appear).
[2]Cheng, M. Y. (1996). Boundary-aware estimators of integrated density derivative products.J. Roy. Statist. Soc. B (to appear).
[3]Cheng, M. Y., Fan, J. S. and Marron, J. S. (1994). Minimax efficiency of local polynomial fit estimators at boundaries.Tech. Rep. 2098, University of North Carolina.
[4]Chu, C. K. (1993). Nonparametric bivariate density estimation.Chin. J. Math. 21, 115–124. · Zbl 0967.53053 · doi:10.1142/S0252959900000157
[5]Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatter-plots.J. Amer. Statist. Assoc. 74, 829–836. · Zbl 0423.62029 · doi:10.2307/2286407
[6]Copas, J. B. (1995). Local likelihood based on kernel censoring.J. Roy. Statist. Soc. B 57, 221–235.
[7]Efron, B. and Tibshirani, R. J. (1996). Using specially designed exponential families for density estimation.J. Amer. Statist. Assoc. (to appear).
[8]Fan, J. (1992). Design-adaptive nonparametric regression.J. Amer. Statist. Assoc. 87, 998–1004. · Zbl 0850.62354 · doi:10.2307/2290637
[9]Fan, J., Gijbels, I., Hu, T.C. and Huang, L.S. (1996). A study of variable bandwidth selection for local polynomial regression.Statist. Sinica 6, 113–127.
[10]Fan, J., Heckman, N. E. and Wand, M. P. (1995). Local polynomial kernel regression for generalized linear models and quasi-likelihood functions.J. Amer. Statist. Assoc. 90, 141–150. · Zbl 0818.62036 · doi:10.2307/2291137
[11]Fan, J. and Marron, J. S. (1994). Fast implementation of nonparametric curve estimators.J. Comput. Graphical Statist. 3, 35–56. · doi:10.2307/1390794
[12]Finney, D. J. (1947).Probit Analysis. Cambridge: University Press.
[13]Hastie, T. J. and Loader, C. (1993). Local regression: automatic kernel carpentry.Statist. Sci. 8, 120–143 (with discussion). · doi:10.1214/ss/1177011002
[14]Hjort, N. L. and Glad, I. (1995). Nonparametric density estimation with a parametric start.Ann. Statist. 23, 882–904. · Zbl 0838.62027 · doi:10.1214/aos/1176324627
[15]Hjort, N. L. and Jones, M. C. (1994). Local fitting of regression models by likelihood: what’s important?Tech. Rep. 10, University of Oslo.
[16]Hjort, N. L. and Jones, M. C. (1996). Locally parametric nonparametric density estimation.Ann. Statist. 24, (to appear).
[17]Jones, M. C. (1991). On correcting for variance inflation in kernel density estimation.Comput. Statist. Data Anal. 11, 3–15. · doi:10.1016/0167-9473(91)90049-8
[18]Jones, M. C. and Hjort, N. L. (1994). Letter to the Editor.Amer. Statist. 48, 353–354.
[19]Lejeune, M. and Sarda, P. (1992). Smooth estimators of distribution and density-functions.Comput. Statist. Data Anal. 14, 457–471. · Zbl 0937.62581 · doi:10.1016/0167-9473(92)90061-J
[20]Loader, C. R. (1996). Local likelihood density estimation.Ann Statist. 24, (to appear).
[21]Olkin, I. and Spiegelman, C. H. (1987). A semiparametric approach to density estimation.J. Amer. Statist. Assoc. 82, 858–865. · Zbl 0632.62027 · doi:10.2307/2288797
[22]Ruppert, D. and Wand, M. P. (1994). Multivariate locally weighted least squares regression.Ann. Statist. 22, 1346–1370. · Zbl 0821.62020 · doi:10.1214/aos/1176325632
[23]Scott, D. W. (1992).Multivariate Density Estimation: Theory, Practice and Visualization, New York: Wiley.
[24]Silverman, B. W. (1986).Density Estimation for Statistics and Data Analysis. London: Chapman and Hall.
[25]Simonoff, J. S. (1995). Smoothing categorical data.J. Statist. Planning and Inference 47, 41–69. · Zbl 0832.62053 · doi:10.1016/0378-3758(94)00121-B
[26]Simonoff, J. S. (1996).Smoothing Methods in Statistics, New York: Springer-Verlag.
[27]Tibshirani, R. J. and Hastie, T. J. (1987). Local likelihood estimation.J. Amer. Statist. Assoc. 82, 559–567. · Zbl 0626.62041 · doi:10.2307/2289465
[28]Wand, M. P. and Jones, M. C. (1995).Kernel Smoothing, London: Chapman and Hall.