zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A Fortran 90-based multiprecision system. (English) Zbl 0883.68017
Summary: A new version of a Fortran multiprecision computation system, based on the Fortran 90 language, is described. With this new approach, a translator program is not required – translation of Fortran code for multiprecision is accomplished by merely utilizing advanced features of Fortran 90, such as derived data types and operator extensions. This approach results in more-reliable translation and permits programmers of multiprecision applications to utilize the full power of Fortran 90. Three multiprecision data types are supported in this system: multiprecision integer, real, and complex. All the usual Fortran conventions for mixed-mode operations are supported, and many of the Fortran intrinsics, such as SIN, EXP, and MOD, are supported with multiprecision arguments. An interesting application of this software, wherein new number-theoretic identities have been discovered by means of multiprecision computations, is included also.
MSC:
68N15Programming languages