zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Singularly perturbed and nonlocal modulation equations for systems with interacting instability mechanisms. (English) Zbl 0885.58075
From the authors’ abstract: “Two related systems of coupled modulation equations are studied and compared in this paper. The modulation equations are derived for a certain class of basic systems which are subject to two distinct, interacting, destabilizing mechanisms...It is found that spatially periodic stationary solutions of the nonlocal system exist under the same conditions as spatially periodic stationary solutions of the singularly perturbed system. Thus, the “Landau reduction” to the nonlocal system has no significant influence on the stationary quasi-periodic patterns. However, a large variety of intricate heteroclinic and homoclinic connections is found for the singularly perturbed system...None of these patterns can be described by the nonlocal system. So, one may conclude that the reduction to the nonlocal system destroys a rich and important set of patterns”.
MSC:
37J40Perturbations, normal forms, small divisors, KAM theory, Arnol’d diffusion
References:
[1]L. Arnold, C. Jones, K. Mischaikow, and G. Raugel (1994)Dynamical Systems, Lecture Notes in Mathematics1609, Springer-Verlag, New York.
[2]P. Bollerman, A. van Harten, and G. Schneider (1994) On the justification of the Ginzburg-Landau approximation, inNonlinear Dynamics and Pattern Formation in the Natural Environment (A. Doelman and A. van Harten, eds.),Pitman Res. Notes in Math. 335, Longman, UK, 20–36.
[3]P. Bollerman (1996)On the Theory of Validity of Amplitude Equations, thesis, Utrecht University, the Netherlands.
[4]A. Doelman (1993) Traveling waves in the complex Ginzburg-Landau equation,J. Nonlin. Sci. 3 225–266. · Zbl 0805.35050 · doi:10.1007/BF02429865
[5]A. Doelman, R.A. Gardner, and C.K.R.T. Jones (1995) Instability of quasi-periodic solutions of the Ginzburg-Landau equation,Proc. Roy. Soc. Edinburg 125A 501–517.
[6]A. Doelman and P. Holmes (1996) Homoclinic explosions and implosions,Phil. Trans. Roy. Soc. London A 354 845–893. · Zbl 0881.58044 · doi:10.1098/rsta.1996.0035
[7]J. Duan, H. V. Ly, and E.S. Titi (1996) The effects of nonlocal interactions on the dynamics of the Ginzburg-Landau equation,Z. Angew. Math. Phys. 47 433–455. · Zbl 0861.35112 · doi:10.1007/BF00916648
[8]W. Eckhaus (1983) Relaxation oscillations including a standard chase on French ducks, inAsymptotic Analysis II, Springer Lect. Notes Math.985 449–494. · doi:10.1007/BFb0062381
[9]W. Eckhaus (1992) On modulation equations of the Ginzburg-Landau type, inICIAM 91: Proc. 2nd Int. Conf. Ind. Appl. Math. (R.E. O’Malley, ed.), Society for Industrial and Applied Mathematics, Philadelphia, 83–98.
[10]W. Eckhaus (1993) The Ginzburg-Landau manifold is an attractor,J. Nonlin. Sci. 3 329–348. · Zbl 0797.35070 · doi:10.1007/BF02429869
[11]N. Fenichel (1979) Geometric singular perturbation theory for ordinary differential equations,J. Diff. Eq. 31 53–98. · Zbl 0476.34034 · doi:10.1016/0022-0396(79)90152-9
[12]A. van Harten (1991) On the validity of Ginzburg-Landau’s equation,J. Nonlin. Sci. 1 397–422. · Zbl 0795.35112 · doi:10.1007/BF02429847
[13]D.R. Jenkins (1985) Non-linear interaction of morphological and convective instabilities during solidification of a binary alloy,I.M.A. J. Appl. Math. 35 145–157.
[14]C.K.R.T. Jones and N. Kopell (1994) Tracking invariant manifolds with differential forms in singularly perturbed systems,J. Diff. Eq. 108 64–88. · Zbl 0796.34038 · doi:10.1006/jdeq.1994.1025
[15]C.K.R.T. Jones, T. Kaper, and N. Kopell (1996) Tracking invariant manifolds up to exponentially small errors,SIAM J. Math. An. 27 558–577. · Zbl 0871.58072 · doi:10.1137/S003614109325966X
[16]T. Kapitula (1996) Existence and stability of singular heteroclinic orbits for the Ginzburg-Landau equation,Nonlinearity 9 669–685. · Zbl 0895.34042 · doi:10.1088/0951-7715/9/3/004
[17]E. Knobloch and J. De Luca (1990) Amplitude equations for travelling wave convection,Nonlinearity 3 975–980. · Zbl 0717.35070 · doi:10.1088/0951-7715/3/4/001
[18]G. Manogg and P. Metzener (1994) Interaction of modes with disparate scales in Rayleigh-Bénard convection, inNonlinear Dynamics and Pattern Formation in the Natural Environment (A. Doelman and A. van Harten, eds.),Pitman Res. Notes in Math. 335, Longman, Harlow, Essex, UK, 188–205.
[19]B.J. Matkovsky and V. Volpert (1992) Coupled nonlocal complex Ginzburg-Landau equations in gasless combustion,Physica 54D 203–219.
[20]B.J. Matkovsky and V. Volpert (1993) Stability of plane wave solutions of complex Ginzbrug-Landau equations,Quart. Appl. Math. 51 265–281.
[21]G.J. Merchant and S.H. Davis (1990) Morphological instability in rapid directional solidification,Acta Metall. Mater. 38 2683–2693. · doi:10.1016/0956-7151(90)90282-L
[22]P. Metzener and M.R.E. Proctor (1992) Interaction of patterns with disparate scales,Eur. J. Mech. B/Fluids 11 759–778.
[23]R.D. Pierce and C.E. Wayne (1995) On the validity of mean-field amplitude equations for counterpropagating wavetrains,Nonlinearity 8 769–779. · Zbl 0833.35128 · doi:10.1088/0951-7715/8/5/007
[24]M.R.E. Proctor and C.A. Jones (1988) The interaction of two spatially resonant patterns in thermal convection, Part 1. Exact 2:1 resonance,J. Fluid Mech. 188 301–335. · Zbl 0649.76018 · doi:10.1017/S0022112088000746
[25]S. Rasenat, F. Busse, and I. Rehberg (1989) A theoretical and experimental study of double-layer convection,J. Fluid Mech. 199 519–540. · Zbl 0659.76115 · doi:10.1017/S0022112089000467
[26]D.S. Riley and S.H. Davis (1990) Long-wave interaction in morphological and convective instabilities,I.M.A. J. Appl. Math. 45 267–285.
[27]C. Robinson (1983) Sustained resonance for a nonlinear system with slowly varying coefficients,SIAM Math. An. 14 847–860. · Zbl 0523.34035 · doi:10.1137/0514066
[28]W. van Saarloos and P.C. Hohenberg (1992) Fronts, pulses, sources and sinks in generalized complex Ginzburg-Landau equations,Physica 56D 303–367.
[29]R.M.J. Schielen and A. Doelman (1996) Modulation equations for spatially periodic systems: Derivation and solutions, preprint.
[30]J.T. Stuart (1958) On the non-linear mechanics of hydrodynamic stability,J. Fluid Mech. 4 1–21. · Zbl 0081.41001 · doi:10.1017/S0022112058000276
[31]G. Vittori and P. Blondeaux (1992) Sand ripples under sea waves, Part 3. Brick pattern ripple formation,J. Fluid Mech. 239 23–45. · Zbl 0754.76021 · doi:10.1017/S0022112092004300
[32]S. Wiggins (1988)Global Bifurcations and Chaos, Springer-Verlag, New York.