zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Pseudomonotone variational inequality problems: Existence of solutions. (English) Zbl 0887.90167
Summary: Necessary and sufficient conditions for the set of solutions of a pseudomonotone variational inequality problem to be nonempty and compact are given.
MSC:
90C33Complementarity and equilibrium problems; variational inequalities (finite dimensions)
49J40Variational methods including variational inequalities
References:
[1]A. Auslender, Résolution numérique d’inégalités variationnelles,RAIRO R2 (1973) 67–72.
[2]A. Auslender, Private communication.
[3]A. Auslender, R. Cominetti and J.-P. Crouzeix, Convex functions with unbounded level sets and applications to duality theory,SIAM Journal on Optimization 3 (1993) 669–687. · Zbl 0808.90102 · doi:10.1137/0803034
[4]J.-P. Crouzeix and J.A. Ferland, First order criteria for generalized monotone maps,Mathematical Programming 75 (1996) 399–406.
[5]J.-P. Crouzeix and S. Schaible, Generalized Monotone affine maps, to appear inSIAM Journal on Matrix Analysis and Applications 17 (1996) 992–997. · Zbl 0868.90108 · doi:10.1137/S0895479895290978
[6]S. Eilenberg and D. Montgomery, Fixed point theorems for multi-valued transformations,American Journal of Mathematics 68 (1946) 214–222. · Zbl 0060.40203 · doi:10.2307/2371832
[7]P.T. Harker and J.S. Pang, Finite dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications,Mathematical Programming 48 (1990) 161–220. · Zbl 0734.90098 · doi:10.1007/BF01582255
[8]M.S. Gowda, Affine pseudomonotone mappings and the linear complementarity problem,SIAM Journal on Matrix Analysis and Applications 11 (1990) 373–380. · Zbl 0719.90083 · doi:10.1137/0611026
[9]S. Karamardian, Complementarity problems over cones with monotone and pseudomonotone maps,Journal of Optimization Theory and Applications 18 (1976) 445–454. · Zbl 0304.49026 · doi:10.1007/BF00932654
[10]S. Karamardian and S. Schaible, Seven kinds of monotone maps,Journal of Optimization Theory and Applications 66 (1990) 37–46. · Zbl 0679.90055 · doi:10.1007/BF00940531
[11]S. Karamardian, S. Schaible and J.-P. Crouzeix, Characterizations of generalized monotone maps,Journal of Optimization Theory and Applications 76 (1993) 399–413. · Zbl 0792.90070 · doi:10.1007/BF00939374
[12]S. Komlosi, Generalized monotonicity and generalized convexity, to appear inJournal of Optimization Theory and Applications.
[13]R. Saigal, Extension of the generalized conplementarity problem,Mathematics of Operations Research 1 (3) (1976) 260–266. · Zbl 0363.90091 · doi:10.1287/moor.1.3.260
[14]S. Schaible, Generalized monotonicity – Concepts and uses, in: F. Giannessi and A. Maugeri, eds.,Variational Inequalities and Network Equilibrium Problems (Plenum, New York, 1995) 289–299.