zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Chaos and asymptotical stability in discrete-time neural networks. (English) Zbl 0889.68122
Summary: By applying Marotto’s theorem this paper aims to prove that both transiently chaotic neural networks (TCNN) and discrete-time recurrent neural networks (DRNN) have chaotic structure. A significant property of TCNN and DRNN is that they have only one bounded fixed point, when absolute values of the self-feedback connection weights in TCNN and the difference time in DRNN are sufficiently large. We show that this unique fixed point can actually evolve into a snap-back repeller which generates a chaotic structure, if several conditions are satisfied. On the other hand, by using the Lyapunov functions, we also derive sufficient conditions on asymptotical stability for symmetrical versions of both TCNN and DRNN, under which TCNN and DRNN asymptotically converge to a fixed point. Furthermore, related bifurcations are also considered in this paper. Since both TCNN and DRNN are not special but simple and general, the obtained theoretical results hold for a wide class of discrete-time neural networks. To demonstrate the theoretical results of this paper better, several numerical simulations are provided as illustrating examples.

MSC:
68T05Learning and adaptive systems
37D45Strange attractors, chaotic dynamics