zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Master equation for an oscillator coupled to the electromagnetic field. (English) Zbl 0890.35116
Summary: The macroscopic description of a quantum oscillator with linear passive dissipation is formulated in terms of a master equation for the reduced density matrix. The procedure used is based on the asymptotic methods of nonlinear dynamics, which enables one to obtain an expression for the general term in the weak coupling expansion. For the special example of a charged oscillator interacting with the electromagnetic field, an explicit form of the master equation through third-order in this expansion is obtained. This form differs from that generally obtained using the rotating wave approximation in that there is no electromagnetic (Lamb) shift and that an explicit expression is given for the decay rate.
MSC:
35Q40PDEs in connection with quantum mechanics
81V80Applications of quantum theory to quantum optics
82B31Stochastic methods in equilibrium statistical mechanics