zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A variant of Korpelevich’s method for variational inequalities with a new search strategy. (English) Zbl 0891.90135
Summary: We present a variant of Korpelevich’s method for variational inequality problems with monotone operators. Instead of a fixed and exogenously given stepsize, possible only when a Lipschitz constant for the operator exists and is known beforehand, we find an appropriate stepsize in each iteration through an Armijo-type search. Differently from other similar schemes, we perform only two projections onto the feasible set in each iteration, rather than one projection for each tentative step during the search, which represents a considerable saving when the projection is computationally expensive. A full convergence analysis is given, without any Lipschitz continuity assumption.

MSC:
90C25Convex programming
49J40Variational methods including variational inequalities
90C30Nonlinear programming
90C33Complementarity and equilibrium problems; variational inequalities (finite dimensions)