zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fluid approximations for a processor-sharing queue. (English) Zbl 0892.90073
Summary: In this paper a fluid approximation, also known as a functional strong law of large numbers (FSLLN) for a GI/G/1 queue under a processor-sharing service discipline is established and its properties are analyzed. The fluid limit depends on the arrival rate, the service time distribution of the initial customers, and the service time distribution of the arriving customers. This is in contrast to the known result for the GI/G/1 queue under a FIFO service discipline, where the fluid limit is piecewise linear and depends on the service time distribution only through its mean. The piecewise linear form of the limit can be recovered by an equilibrium type choice of the initial service distribution.
90B22Queues and service (optimization)
60K25Queueing theory