zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The tolerance approach in multiobjective linear fractional programming. (English) Zbl 0892.90150

Summary: When solving a multiobjective programming problem by the weighted sum approach, weights represent the relative importance associated to the objectives. As these values are usually imprecise, it is important to analyze the sensitivity of the solution under possible deviations on the estimated values. In this sense, the tolerance approach provides a direct measure of how weights may vary simultaneously and independently from their estimated values while still retaining the same efficient solution.

This paper provides an explicit expression to the maximum tolerance on weights in a multiobjective linear fractional programming problem when all the denominators are equal. An application is also presented to illustrate how the results may help the decision maker to choose a most satisfactory solution in a production problem.

90C29Multi-objective programming; goal programming
90B50Management decision making, including multiple objectives
90C31Sensitivity, stability, parametric optimization
90C32Fractional programming
[1]Bereanu, B. (1953). Distribution problem and minimum-risk solutions in stochastic programming, in:Colloquium on Applications of Mathematics to Economics. A Prekope, Akademia Kiado (Budapest), 37–42.
[2]Bradley, S.P. and S.C. Frey Jr. (1974), Fractional Programming with homogeneous functions,Operations Research 22, 350–357. · Zbl 0282.90044 · doi:10.1287/opre.22.2.350
[3]Bitran, G.R. and A.G. Novaes, (1974). Linear programming with a fractional objective function,Operations Research 21, 22–29. · Zbl 0259.90046 · doi:10.1287/opre.21.1.22
[4]Charnes, A. and W.W. Cooper, (1962), Programming with linear fractional functionals.Naval Research Logistics Quarterly 9, 181–185. · Zbl 0127.36901 · doi:10.1002/nav.3800090303
[5]Derman, C., (1962), On sequential decisions and Markov chains.Management Science 9, 16–24. · Zbl 0995.90621 · doi:10.1287/mnsc.9.1.16
[6]Dutta, D.; J.R. Rao and R.N. Tiwari, (1992), Sensitivity analysis in fractional programming-the tolerance approach.International Journal of Systems Sciences 23, 5, 823–832. · Zbl 0773.90074 · doi:10.1080/00207729208949251
[7]Fox, B., (1966), Markov renewal programming by linear fractional programming,SIAM Journal of Applied Mathematics 14, 1418–1432. · Zbl 0154.45003 · doi:10.1137/0114110
[8]Gilmore, P.C. and R.E. Gomory, (1961), A linear programming approach to the cutting stock problem,Operations Research 9, 849–859. · Zbl 0096.35501 · doi:10.1287/opre.9.6.849
[9]Hansen, P.; M. Labbé and R. Wendell, (1989), Sensitivity analysis in multiple objective linear programming: the tolerance approach,European Journal of Operational Research 38, 63–69. · Zbl 0679.90069 · doi:10.1016/0377-2217(89)90469-4
[10]Mármol, A.M. and J. Puerto, (1997), Special cases of the tolerance approach in multiobjective linear programming,European Journal of Operational Research 98, 3, 610–616. · Zbl 0917.90267 · doi:10.1016/S0377-2217(96)00215-9
[11]Martos, B., (1964), Hyperbolic programing,Naval Research Logistics Quarterly 11, 135–155. · Zbl 0131.18504 · doi:10.1002/nav.3800110204
[12]Meister, B. and W. Oetlli, (1967), On the capacity of a discrete constant channel,Information and Control 11, 341–351. · Zbl 0157.48903 · doi:10.1016/S0019-9958(67)90600-6
[13]Ravi, N. and R. Wendell, (1989), The tolerance approach to sensitivity analysis of matrix coefficients in linear programming,Management Science 35, 9, 1106–1119. · Zbl 0682.90056 · doi:10.1287/mnsc.35.9.1106
[14]Stancu-Minasian, I.M., (1980), Applications of the fractional programming,Economic computation and economic cybernetics studies and research 14, pp. 69–86.
[15]Wendell, R.E., (1984), Using bounds on the data in linear programing: The tolerance approach to sensitivity analysis,Mathematical Programming 29, 304–322. · Zbl 0547.90089 · doi:10.1007/BF02591999
[16]Wendell, R.E., (1985), The tolerance approach to sensitivity analysis in linear programming,Management Sciences 31, 5, 564–578. · Zbl 0622.90081 · doi:10.1287/mnsc.31.5.564
[17]Ziemba, W.T., C. Parkan and F.J. Brooks-Hill, (1974), Calculation of investments portfolios with risk free borrowing and leading,Management Science 21, 209–222. · Zbl 0294.90004 · doi:10.1287/mnsc.21.2.209