zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Poncelet polygons and the Painlevé equations. (English) Zbl 0893.32018
Geometry and analysis. Papers presented at the Bombay colloquium, India, January 6–14, 1992. Oxford: Oxford University Press. Stud. Math., Tata Inst. Fundam. Res. 13, 151-185 (1995).

This paper is central in the recent renaissance in the study of the Painlevé equations [see also N. J. Hitchin, J. Differ. Geom. 42, No. 1, 30-112 (1995; Zbl 0861.53049); Yu. I. Manin, “Sixth Painlevé equation, universal elliptic curve and mirror of 2 ”, Preprint, Max-Planck-Inst. Math., Bonn, (1996); L. Mason and N. Woodhouse, “Integrability, self-duality and twistor theory”, Clarendon Press, Oxford Univ. Press, Oxford (1996; Zbl 0856.58002)]. The author gives explicit solutions to the sixth Painlevé equation. These solutions are related to a flat unitary connection with singularities. In the context of a theorem of Narasimhan and Seshadri, the connection mediates between parabolically stable bundles and representations of the fundamental group.

The damand for explicitness motivates the restriction of the study to bundles on the complex projective line. Indeed, the author looks for a connection written as a 2×2 matrix-valued 1-form with a simple pole at four points on the projective line. Fixing the holonomy, the 1-form associated to each set of four points comes from a solution to the Schlesinger equation of isomonodromic deformation theory and leads to the sixth Painlevé equation. The author concentrates on algebraic solutions coming from a curve defined by the binary dihedral group D k in SU(2) and he obtains explicit solutions for small k.

The approach is to consider a smooth projective complex threefold with an action of SL(2,) and a dense open orbit. The Maurer-Cartan form gives a meromorphic connection on Z which is flat on SL(2,)/D k and has holonomy D k . The connection has a logarithmic singularity along an anticanonical divisor Y in Z and there is a four-parameter family of rational curves in Z intersecting Y in four points with varying cross ratio. This gives the isomonodromic deformation and the solution to the Painlevé equation.

The construction of the compactification Z builds on work on Schwarzenberger and leads to a description of Z as a projectivized bundle P(V k ) where V k is a rank two vector bundle on P 2 . One type of rational curve in Z projects to conics in P 2 and leads to the old problem (from around 1746) of the Poncelet polygons (given two conics in the projective plane, is it possible to find polygons inscribed in one conic and circumscribed by the other [P. Griffiths and J. Harris, Enseign. Math., II. Ser. 24, No. 1-2, 31-40 (1978; Zbl 0384.14009)]. Using a modern description by Atiyah of Cayley’s solution from 1853 of the Poncelet problem, the author is able to get the connection explicitly. The work of W. P. Barth and J. Michel [Math. Ann. 295, No. 1, 25-49 (1993; Zbl 0789.14033)] is used to find the modular curve giving the algebraic solution of the Painlevé equation corresponding to the dihedral group.

32Q20Kähler-Einstein manifolds
14J60Vector bundles on surfaces and higher-order varieties, and their moduli
32L05Holomorphic fiber bundles and generalizations
37J35Completely integrable systems, topological structure of phase space, integration methods
37K10Completely integrable systems, integrability tests, bi-Hamiltonian structures, hierarchies