zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A fractal model for the rigid-perfectly plastic contact of rough surfaces. (English) Zbl 0894.73142
Summary: A continuous asymptotic model is developed to describe the rigid-perfectly plastic deformation of a single rough surface in contact with an ideally smooth and rigid counter-surface. The geometry of the rough surface is assumed to be fractal, and is modeled by an effective fractal surface compressed into the ideally smooth and rigid counter-surface. The rough self-affine fractal structure of the effective surface is approximated using a deterministic Cantor set representation. The proposed model admits an analytic solution incorporating volume conservation. Presented results illustrate the effects of volume conservation and initial surface roughness on the rigid-perfectly plastic deformation that occurs during contact processes. The results from this model are compared with existing experimental load displacement results for the deformation of a ground steel surface.
MSC:
74A55Theories of friction (tribology)
74M15Contact (solid mechanics)
28A80Fractals