zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Minimization of nonsmooth convex functionals in Banach spaces. (English) Zbl 0895.90150
Summary: We develop a unified framework for convergence analysis of subgradient and subgradient projection methods for minimization of nonsmooth convex functionals in Banach spaces. The important novel features of our analysis are that we neither assume that the functional is uniformly or strongly convex, nor use regularization techniques. Moreover, no boundedness assumptions are made on the level sets of the functional or the feasible set of the problem. In fact, the solution set can be unbounded. Under very mild assumptions, we prove that the sequence of iterates is bounded and it has at least one weak accumulation point which is a minimizer. Moreover, all weak accumulation points of the sequence of CesĂ ro averages of the iterates are solutions of the minimization problem. Under certain additional assumptions (which are satisfied for several important instances of Banach spaces), we are able to exhibit weak convergence of the whole sequence of iterates to one of the solutions of the optimization problem. To our knowledge, this is the first result of this kind for general nonsmooth convex minimization in Banach spaces.

MSC:
90C25Convex programming
49J52Nonsmooth analysis (other weak concepts of optimality)
90C30Nonlinear programming
49J40Variational methods including variational inequalities