zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Nonconvex minimization theorems and fixed point theorems in complete metric spaces. (English) Zbl 0897.54029
Let (X,d) be a metric space. The authors first introduce the concept of w-distance, it is a generalization of metric d on X. They establish some properties of w-distance and prove a nonconvex minimization theorem which improves a result of Takahashi. They also improve Caristi’s fixed point theorem and Ekeland’s E-variational principle. They also prove a fixed point theorem in a complete metric space and apply this theorem to prove Subrahmanyam’s fixed point theorem, Kaman’s fixed point theorem, and Čirič’s fixed point theorem. The results of this paper seem useful, interesting, and original.

54H25Fixed-point and coincidence theorems in topological spaces
49J45Optimal control problems involving semicontinuity and convergence; relaxation
49J40Variational methods including variational inequalities