zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Robust constrained model predictive control using linear matrix inequalities. (English) Zbl 0897.93023

In this paper an approach is presented to overcome the main disadvantage of current design techniques for model predictive control (MPC), i.e. their inability to deal explicitly with plant model uncertainty. Hence, the authors present – what is best characterized by the following from their abstract – ‘an approach for MPC synthesis that allows for explicit incorporation of the description of plant uncertainty in the problem formulation. The goal is to design, at each time step, a state-feedback control law that minimizes a worst-case infinite horizon objective function, subject to constraints on the control input and plant output. Using standard techniques this problem is reduced to a convex optimization involving linear matrix inequalities.’

The authors show that this design results in a control that robustly stabilizes the set of uncertain plants. Several extensions are discussed and well-chosen examples illustrate the theoretical results of this well readable paper which is of interest for control engineers and applied mathematicians interested in automatic control.

Reviewer: I.Troch (Wien)

93B51Design techniques in systems theory
15A39Linear inequalities of matrices
93D21Adaptive or robust stabilization