×

Chaotic jets with multifractal space-time random walk. (English) Zbl 0902.60071

Summary: The problem of normal and anomalous diffusion is examined for the four-dimensional (4-D) map that arises from the problem of particle motion in a constant magnetic field and electrostatic wave packet. This 4-D map consists of two coupled 2-D maps: a standard map and a web map. The case of a weak chaos is considered. It is shown that due to the finite observation time, the particle diffusion possesses strong nonhomogeneous properties. Existence of long-living bundles of orbits with coherent propagation property is checked. These bundles are named “chaotic jets”. The same name is used for a part of the trajectory if this part corresponds to long-living trapping or flight. The existence of chaotic jets depends on the topological properties of the phase space and influences the asymptotic law of transport. The particle transport can be considered as a random walk in the multifractal space-time that is produced by flights and trappings of a test particle in some area of its phase space. Lévy random walk theory and its generalization for the multifractal space-time situation is considered and asymptotic laws for displacements are derived. Different intermediate asymptotics are discussed.

MSC:

60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1016/0370-1573(79)90023-1 · doi:10.1016/0370-1573(79)90023-1
[2] DOI: 10.1103/PhysRevLett.44.1586 · doi:10.1103/PhysRevLett.44.1586
[3] Jensen R. V., Physica D 4 pp 183– (1982) · Zbl 1194.37056 · doi:10.1016/0167-2789(82)90059-8
[4] Berger J. M., IBM J. Res. Develop. 7 pp 224– (1963) · doi:10.1147/rd.73.0224
[5] Shlesinger M. F., Physica D 38 pp 304– (1989) · doi:10.1016/0167-2789(89)90211-X
[6] DOI: 10.1103/PhysRevLett.58.1100 · doi:10.1103/PhysRevLett.58.1100
[7] DOI: 10.1146/annurev.pc.39.100188.001413 · doi:10.1146/annurev.pc.39.100188.001413
[8] DOI: 10.1098/rspa.1926.0043 · doi:10.1098/rspa.1926.0043
[9] DOI: 10.1063/1.881235 · doi:10.1063/1.881235
[10] DOI: 10.1016/0370-1573(87)90110-4 · doi:10.1016/0370-1573(87)90110-4
[11] Young W. R., J. Fluid Mech. 164 pp 185– (1983)
[12] Pomeau Y., Phys. Fluids A 1 pp 462– (1989) · Zbl 0659.76097 · doi:10.1063/1.857415
[13] DOI: 10.1209/0295-5075/7/3/007 · doi:10.1209/0295-5075/7/3/007
[14] Zaslavsky G. M., Sov. Phys.–JETP 68 pp 995– (1989)
[15] Zaslavsky G. M., Sov. Phys.–JETP 67 pp 270– (1988)
[16] Chernikov A. A., Nature 337 pp 133– (1989) · doi:10.1038/337133a0
[17] DOI: 10.1016/0375-9601(90)90687-J · doi:10.1016/0375-9601(90)90687-J
[18] Geisel T., Europhys. News 15 pp 5– (1984)
[19] DOI: 10.1103/PhysRevA.29.2305 · doi:10.1103/PhysRevA.29.2305
[20] DOI: 10.1016/0167-2789(80)90013-5 · doi:10.1016/0167-2789(80)90013-5
[21] Zaslavsky G. M., Fis. Plazmy 14 pp 807– (1988)
[22] Zaslavsky G. M., Sov. Phys.–Usp. 31 pp 887– (1988) · doi:10.1070/PU1988v031n10ABEH005632
[23] Zaslavsky G. M., Zh. Eksp. Teor. Phys. 96 pp 1563– (1989)
[24] Zaslavsky G. M., Sov. Phys.–JETP 64 pp 294– (1986)
[25] Arnold V. I., Dokl. Akad. Nauk. SSSR 156 pp 9– (1969)
[26] Nekhoroshev N. N., Usp. Matem. Nauk 32 pp 6– (1977)
[27] DOI: 10.1016/0375-9601(90)90237-I · doi:10.1016/0375-9601(90)90237-I
[28] DOI: 10.1063/1.1704269 · Zbl 1342.60067 · doi:10.1063/1.1704269
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.