×

Regularity of solutions to a one-dimensional plasticity model. (English) Zbl 0906.73028

Summary: A quasi-static one-dimensional plasticity model subject to multilinear kinematic law is formulated as a system of variational inequalities. \(H^2\) regularity in the space variable is proved for the displacement and \(H^1\) regularity is proved for the stress.

MSC:

74C99 Plastic materials, materials of stress-rate and internal-variable type
35Q72 Other PDE from mechanics (MSC2000)
35B65 Smoothness and regularity of solutions to PDEs
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] I. BABUŠKA, Y. LI and K. L. JERINA, Rehability of computational analysis of plasticity problems, In Non-linear Computational Mechanics, P. Wriggers and W. Wagner Eds, Springer-verlag, 1991.
[2] I. BABUŠKA and P. SHI, A continuous Galerkin method in one dimensional plasticity, in preparation.
[3] P. BENILAN, M. G. GRANDALL and P. SACKS, Some Ll existence and dependence results for semilinear elliptic equationsunder non linear boundary conditions, Appl. Math. Optim. Vol. 17. 1988, pp. 203-224. Zbl0652.35043 MR922980 · Zbl 0652.35043 · doi:10.1007/BF01448367
[4] G. DUVAULT and J. L. LIONS, Inequalities in mechanics and physics, Springer-Verlag, Berlin-New York, 1976. Zbl0331.35002 MR600341 · Zbl 0331.35002
[5] I. EKELAND and R. TEMAM, Convex analysis and variational problems, North-Holland, 1976. Zbl0322.90046 MR463994 · Zbl 0322.90046
[6] W. HAN and B. D. REDDY, Computational plasticity: the variational basis and numerical analysis, Computational Mechanics Advances, 2, No. 2, 1995. Zbl0847.73078 MR1361227 · Zbl 0847.73078
[7] I. HLAVÁČEK, J. HASLINGER, J. NEČAS and J. LOVIŠEK, Solutions of variational inequalities in mechanics, Springer-Verlag, 1988. Zbl0654.73019 MR952855 · Zbl 0654.73019 · doi:10.1007/978-1-4612-1048-1
[8] C. JOHNSON, Existence theorems for plasticity problems, J. Math. Pure et Appl., 55, pp. 431-444 (1976). Zbl0351.73049 MR438867 · Zbl 0351.73049
[9] C. JOHNSON, On plasticity with hardening, J. Math. Anal. Appl., 62, pp. 333-344 (1978). Zbl0373.73049 MR489198 · Zbl 0373.73049 · doi:10.1016/0022-247X(78)90129-4
[10] M. A. KRASNOSEL’SKII and A. V. POKROVSKII, Systems with Hysteresis (in Russian), Nauka, Moscow, 1983 (English edition: Springer 1989). MR987431
[11] P. KREJĆĬ, Hysteresis, Convexity, and Dissipation in Hyperbolic Equations, Springer, 1996. MR2466538 · Zbl 1187.35003
[12] Y. LI and I. BABUŠKA, A convergence analysis of an H-version finite element method with high order elements for two dimensional elasto-plastic problems, SIAM J. Numer. Anal., to appear. Zbl0879.73070 MR1451111 · Zbl 0879.73070 · doi:10.1137/S0036142994263578
[13] J. LUBLINER, Plasticity Theory, Macmillan Publishing Company, New York, 1990. Zbl0745.73006 · Zbl 0745.73006
[14] J. LEMAITRE and J. L. CHABOCHE, Mechanics of Solid Materials, Cambridge University Press, 1985. Zbl0743.73002 · Zbl 0743.73002 · doi:10.1017/CBO9781139167970
[15] G. MAUGIN, The Thermodynamics of Plasticity and Fracture, Cambridge University Press, 1992. Zbl0753.73001 MR1173212 · Zbl 0753.73001 · doi:10.1017/CBO9781139172400
[16] A. VISINTIN, Differential Models of Hysteresis, Springer, 1994. Zbl0820.35004 MR1329094 · Zbl 0820.35004
[17] M. ZYZCKOWSKI, Combined Loading in the Theory of Plasticity, PWN-Polish Scientific Publisher, Warszawa, 1981. Zbl0497.73036 · Zbl 0497.73036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.