zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
RFSFNS: A portable package for the numerical determination of the number and the calculation of roots of Bessel functions. (English) Zbl 0908.65010
Summary: A portable software package, named RFSFNS, is presented for the localization and computation of the simple real zeros of the Bessel functions of first and second kind, J ν (z), Y ν (z), respectively, and their derivatives, where ν0 and z>0. This package implements the topological degree theory for the localization portion and a modified bisection method for the computation one. It localizes, isolates and computes with certainty all the desired zeros of the above functions in a predetermined interval within any accuracy (subject to relative machine precision). It has been implemented and tested on different machines utilizing the above Bessel functions of various orders and several intervals of the argument.
MSC:
65D20Computation of special functions, construction of tables
65Y15Packaged methods in numerical analysis
33C10Bessel and Airy functions, cylinder functions, 0 F 1
Software:
CHABIS; RFSFNS