zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Computer methods for ordinary differential equations and differential-algebraic equations. (English) Zbl 0908.65055
Philadelphia, PA: SIAM, Society for Industrial and Applied Mathematics. xvii, 314 p. $ 36.50 (1998).

Ordinary differential equations (ODEs) have become widely used in applied science and this explains the need for a book which aims at giving a practical understanding of numerical methods for different branches of ODEs without presenting all the mathematical proofs. The book is organized in parts covering respectively the numerical solution of ordinary differential equations (initial value problems), boundary value problems as well as differential algebraic equations (DAEs).

The part on initial value problems addresses general concepts such as convergence and stability issues followed by Runge-Kutta methods and multistep methods. A fair amount of attention is given to implementational issues such as error estimation, step-size control and the modified Newton iteration. For boundary value problems shooting methods and finite difference methods are described and again many implementational issues are discussed. The last part on DAEs has a much more extensive introduction than the other parts and treats concepts such as index and invariants.

The chapter on numerical methods extends the methods from the section on initial value problems and describes some of the problems and their possible solutions. All in all the book, which also contains many examples and pointers to software, is excellent as an introduction to the field and definitely suitable for introductory courses at senior undergraduate or beginning graduate level.

65LxxNumerical methods for ODE
34A34Nonlinear ODE and systems, general
34B15Nonlinear boundary value problems for ODE
34A09Implicit equations, differential-algebraic equations
65-01Textbooks (numerical analysis)