zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod. (English) Zbl 0910.73036
The analysis of the title problem is based on a set of highly nonlinear coupled equations depending on the longitudinal coordinate and time. The main progress is made by the study of the following particular cases: the linearized case which provides the existence of travelling waves of arbitrary shape, the finite-amplitude long-wave case, the far-field solution, and the finite-amplitude finite-wavelength case.

MSC:
74H45Vibrations (dynamical problems in solid mechanics)
74K10Rods (beams, columns, shafts, arches, rings, etc.) in solid mechanics
74B20Nonlinear elasticity
References:
[1]Green, W. A.: Dispersion relations for elastic waves in bars. In: Progress in solid mechanics, Vol. I (Sneddon, I. N., Hill, R., eds.), pp. 128-153. Amsterdam: North-Holland 1960.
[2]Achenbach, J. D.: Wave propagation in elastic solids. Amsterdam: North-Holland 1973.
[3]Wright, T. W.: Nonlinear waves in rods. In: Proceedings of the IUTAM Symposium on Finite Elasticity (Carlson, D. E., Shields, R. T., eds.), pp. 423-443. The Hague: Martinus Nijhoff 1982.
[4]Wright, T. W.: Nonlinear waves in rods: results for incompressible materials. Stud. Appl. Math.72, 149-160 (1985).
[5]Coleman, B. D., Newman, D. C.: On waves in slender elastic rods. Arch. Rat. Mech. Anal.109, 39-61 (1990). · Zbl 0716.73013 · doi:10.1007/BF00377978
[6]Nariboli, G. A.: Nonlinear longitudinal dispersive waves in elastic rods. J. Math. Phys. Sci.4, 64-73 (1970).
[7]Soerensen, M. P., Christiansen, P. L., Lomdahl, P. S.: Solitary waves on nonlinear rods I. J. Acoust. Soc. Am.78, 871-879 (1984). · Zbl 0564.73035 · doi:10.1121/1.391312
[8]Soerensen, M. P., Christiansen, P. L., Lomdahl, P. S., Skovgaard, O.: Solitary waves on nonlinear rods II. J. Acoust. Soc. Am.81, 1718-1722 (1987). · doi:10.1121/1.394786
[9]Clarkson, P. A., LeVeque, R. J., Saxton, R.: Solitary-wave interaction in elastic rods. Stud. Appl. Math.75, 95-122 (1986).
[10]Cohen, H., Dai, H.-H.: Nonlinear axisymmetric waves in compressible hyperelastic rods: long finite amplitude waves. Acta Mech.100, 223-239 (1993). · Zbl 0788.73025 · doi:10.1007/BF01174791
[11]Cohen, H.: A non-linear theory of elastic directed curves. Int. J. Eng. Sci.4, 511-524 (1966). · doi:10.1016/0020-7225(66)90013-9
[12]Green, A. E., Naghdi, P. M., Wenner, M. L.: On the theory of rods. Part I. Derivations from three-dimensional equations. Proc. R. Soc. London Ser. A337, 451-483 (1974). · Zbl 0325.73053 · doi:10.1098/rspa.1974.0061
[13]Green, A. E., Naghdi, P. M., Wenner, M. L.: On the theory of rods. Part II. Developments by direct approach. Proc. R. Soc. London Ser. A337, 485-507 (1974). · Zbl 0327.73044 · doi:10.1098/rspa.1974.0062
[14]Antman, S. S.: The theory of rods. In: Handbuch der Physik, Bd. VI a/2. Berlin G?ttingen Heidelberg: Springer 1972.
[15]Benjamin, T. B., Bona, J. L., Mahony, J. J.: Model equations for long waves in nonlinear dispersive systems. Phil. Trans. R. Soc. London Ser. A227, 47-78 (1972).
[16]Ciarlet, P. G.: Mathematical elasticity. Berlin Heidelberg New York: Springer 1987.
[17]Truesdell, C., Noll, W.: Non-linear field theories of mechanics. In: Handbuch der Physik, Bd. III/3. Berlin Heidelberg New York: Springer 1965.
[18]Ogden, R. W.: Non-linear elastic deformations. New York Chichester Toronto: Ellis Horwood 1984.
[19]Jeffrey, A., Kawahara, T.: Asymptotic methods in nonlinear wave theory. London: Pitman 1982.
[20]Drazin, P. G., Johnson, R. S.: Solitons: an introduction. Cambridge New York: Cambridge University Press 1989.
[21]Olver, P. J.: Euler operators and conservation laws of the BBM equation. Math. Proc. Camb. Phil. Soc.85, 143-160 (1979(. · Zbl 0387.35050 · doi:10.1017/S0305004100055572
[22]Peregrine, D. H.: Calculations of the development of an undular bore. J. Fluid Mech.25, 321-330 (1966). · doi:10.1017/S0022112066001678
[23]Eilbeck, J. C., McGuire, G. R.: Numerical study of the regularized long wave equation. Part I. Numerical methods. J. Comput. Phys.19, 43-57 (1975). · Zbl 0325.65054 · doi:10.1016/0021-9991(75)90115-1
[24]Bona, J. L., Pritchard, W. G., Scott, L. R.: Numerical schemes for a model for nonlinear dispersive waves. J. Comput. Phys.60, 167-186 (1985). · Zbl 0578.65120 · doi:10.1016/0021-9991(85)90001-4
[25]Guo, B.-Y., Manoranjah, V. S.: A spectral method for solving the RLW equation. IMA J. Numer. Anal.5, 307-318 (1985). · Zbl 0577.65106 · doi:10.1093/imanum/5.3.307