zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Approximate iterations in Bregman-function-based proximal algorithms. (English) Zbl 0920.90117
Summary: This paper establishes convergence of generalized Bregman-function-based proximal point algorithms when the iterates are computed only approximately. The problem being solved is modeled as a general maximal monotone operator, and need not reduce to minimization of a function. The accuracy conditions on the iterates resemble those required for the classical “linear” proximal point algorithm, but are slightly stronger; they should be easier to verify or enforce in practice than conditions given in earlier analyses of approximate generalized proximal methods. Subjects to these practically enforceable accuracy restrictions, convergence is obtained under the same conditions currently established for exact Bregman-function-based proximal methods.

MSC:
90C25Convex programming
References:
[1]H. H. Bauschke, J. M. Borwein, Legendre functions and the method of random Bregman projections, Journal of Convex Analysis 4 (1997) 27–67.
[2]H. Brézis, Opérateurs Maximaux Monotones et Semi-Groups de Contractions dans les Espaces de Hilbert, North-Holland, Amsterdam, 1973.
[3]R. E. Bruck, An iterative solution of a variational inequality for certain monotone operators in Hilbert space, Bulletin of the American Mathematical Society 81 (1975) 890–892. · Zbl 0332.49005 · doi:10.1090/S0002-9904-1975-13874-2
[4]R. E. Bruck, Corrigendum to [3], Bulletin of the American Mathematical Society 82 (1976) 353.
[5]R. S. Burachik, A. N. Iusem, A generalized proximal point algorithm for the variational inequality problem in Hilbert space, Working Paper, Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 1995.
[6]R. S. Burachik, A. N. Iusem, B. F. Svaiter, Enlargement of monotone operators with applications to variational inequalities, Set-Valued Analysis 5 (1997) 159–180. · Zbl 0882.90105 · doi:10.1023/A:1008615624787
[7]Y. Censor, S. A. Zenios, The proximal minimization algorithm withD-functions, Journal of Optimization Theory and Applications 73 (1992) 451–464. · Zbl 0794.90058 · doi:10.1007/BF00940051
[8]Y. Censor, A. N. Iusem, S. A. Zenios, An interior-point method with Bregman functions for the variational inequality problem with paramonotone operators, Working Paper, University of Haifa, 1994.
[9]G. Chen, M. Teboulle, A convergence analysis of proximal-like minimization algorithms using Bregman functions, SIAM Journal on Optimization 3 (1993) 538–543. · Zbl 0808.90103 · doi:10.1137/0803026
[10]G. Cohen, Auxiliary problem principle and decomposition of optimization problems, Journal of Optimization Theory and Applications 32 (1980) 277–305. · Zbl 0417.49046 · doi:10.1007/BF00934554
[11]G. Cohen, Auxiliary problem principle extended to variational inequalities, Journal of Optimization Theory and Applications 59 (1988) 325–333. · Zbl 0628.90069 · doi:10.1007/BF00940305
[12]J. Eckstein, Nonlinear proximal point algorithms using Bregman functions, with applications to convex programming, Mathematics of Operations Research 18 (1993) 202–226. · Zbl 0807.47036 · doi:10.1287/moor.18.1.202
[13]J. Eckstein, M. C. Ferris, Smooth methods of multipliers for monotone complementarity problems, RUTCOR Research Report RRR 27–96, Rutgers University, 1996, revised 1997.
[14]S. D. Fl”m, A. S. Antipin, Equilibrium programming using a proximal-like algorithm, Mathematical Programming 78 (1997) 29–41. · Zbl 0890.90150 · doi:10.1007/BF02614504
[15]A. N. Iusem, B. F. Svaiter, M. Teboulle, Entropy-like proximal methods in convex programming, Mathematics of Operations Research 19 (1994) 790–814. · Zbl 0821.90092 · doi:10.1287/moor.19.4.790
[16]A. N. Iusem, M. Teboulle, Convergence rate analysis of nonquadratic proximal methods for convex and linear programming, Mathematics of Operations Research 20 (1995) 657–677. · Zbl 0845.90099 · doi:10.1287/moor.20.3.657
[17]S. Kabbadj, Methodes Proximales Entopiques, Doctoral Thesis, Université de Montpellier II–Sciences et Techniques du Languedoc, 1994.
[18]K. C. Kiwiel, Proximal minimization methods with generalized Bregman functions, SIAM Journal on Control and Optimization 35 (1997) 1142–1168. · Zbl 0890.65061 · doi:10.1137/S0363012995281742
[19]K. C. Kiwiel, On the twice deifferentiable cubic augmented lagrangian, Journal of Optimization Theory and Applications 88 (1996) 233–236. · Zbl 0842.90093 · doi:10.1007/BF02192031
[20]S. S. Nielsen, S. A. Zenios, Proximal minimization withD-functions and massively parallel solution of linear stochastic network problems, Computational Optimization and Applications 1 (1993) 375–398. · Zbl 0784.90081 · doi:10.1007/BF00248763
[21]B. Polyak, Introduction to Optimization, Optomization Softwave Inc., New York, 1987.
[22]R. T., Rockafellar, Local boundedness of nonlinear monotone operators, Michigan Mathematical Journal 16 (1969) 397–407. · Zbl 0184.17801 · doi:10.1307/mmj/1029000324
[23]R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[24]R. T. Rockafellar, On the miximality of sums of nonlinear monotone operators, Transactions of the American Mathematical Society 149 (1970) 75–88. · doi:10.1090/S0002-9947-1970-0282272-5
[25]R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM Journal on Control and Optimization 14 (1976) 877–898. · Zbl 0358.90053 · doi:10.1137/0314056
[26]M. Teboulle, Entropic proximal mappings with applications to nonlinear programming, Mathematics of Operations Research 17 (1992) 670–690. · Zbl 0766.90071 · doi:10.1287/moor.17.3.670
[27]M. Teboulle, Convergence of proximal-like algorithms, SIAM Journal of Optimization (to appear).