zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The most-obtuse-angle row pivot rule for achieving dual feasibility: A computational study. (English) Zbl 0921.90119
Summary: We recently proposed several new pivot rules for achieving dual feasibility in linear programming, which are distinct from existing ones: the objective function value will no longer change necessarily monotonically in their solution process. In this paper, we report our further computational testing with one of them, the most-obtuse-angle rule. A two-phase dual simplex algorithm, in which the rule is used as a row selection rule for Phase-1, has been implemented in FORTRAN 77 modules, and was tested on a set of standard linear programming problems from NETLIB. We show that, if full pricing is applied, our code unambiguously will outperform MINOS 5.3, one of the best implementations of the simplex algorithm at present.
90C05Linear programming