zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Wave breaking for nonlinear nonlocal shallow water equations. (English) Zbl 0923.76025
The authors continue their analysis published in [Math. Ann. 312, No. 3, 403-416 (1998), see the preceding review; Zbl 0923.76012]. Namely, they study the occurrence of a singularity and its nature in the wave motion by using the nonlinear nonlocal shallow water theory (blow-up phenomenon). The aim is to avoid some additional assumptions made by previous authors who studied the problem. The construction is based on theorem 2.1 which is applied to different forms of shallow water equations.
MSC:
76B15Water waves, gravity waves; dispersion and scattering, nonlinear interaction
35Q53KdV-like (Korteweg-de Vries) equations
35Q35PDEs in connection with fluid mechanics
References:
[1]Alber, M. S., Camassa, R., Holm, D. &Marsden, J. E., The geometry of peaked solitons and billiard solutions of a class of integrable PDE’s.Lett. Math. Phys., 32 (1994), 137–151. · Zbl 0808.35124 · doi:10.1007/BF00739423
[2]Alinhac, S.,Blow-up for Nonlinear Hyperbolic Equations. Progr. Nonlinear Differential Equations Appl., 17. Birkhäuser Boston, Boston, MA, 1995.
[3]–, Blow-up of classical solutions of nonlinear hyperbolic equations: a survey of recent results, inPartial Differential Equations and Mathematical Physics (Copenhagen, 1995; Lund, 1995), pp. 15–24. Progr. Nonlinear Differential Equations Appl., 21, Birkhäuser Boston, Boston, MA, 1996.
[4]Boyd, J. P., Peakons and coshoidal waves: traveling wave solutions of the Camassa-Holm equation,Appl. Math. Comput., 81 (1997), 173–187. · Zbl 0871.35089 · doi:10.1016/0096-3003(95)00326-6
[5]Caffarelli, L. &Friedman, A., Differentiability of the blow-up curve for one-dimensional nonlinear wave equations.Arch. Rational Mech. Anal., 91 (1985), 83–98. · Zbl 0593.35055 · doi:10.1007/BF00280224
[6]Calogero, F. &Françoise, J.-P., A completely integrable Hamiltonian system.J. Math. Phys., 37 (1996), 2863–2871. · Zbl 0864.58025 · doi:10.1063/1.531536
[7]Camassa, R. &Holm, D., An integrable shallow water equation with peaked solitions.Phys. Rev. Lett., 71 (1993), 1661–1664. · Zbl 0936.35153 · doi:10.1103/PhysRevLett.71.1661
[8]Camassa, R., Holm, D. &Hyman, J., A new integrable shallow water equation.Adv. in Appl. Mech., 31 (1994), 1–33. · doi:10.1016/S0065-2156(08)70254-0
[9]Constantin, A. &Escher, J., Global existence and blow-up for a shallow water equation.Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), 303–328.
[10]Constantin, A. & McKean, H. P., A shallow water equation on the circle. To appear inComm. Pure Appl. Math.
[11]Cooper, F. &Shepard, H., Solitons in the Camassa-Holm shallow water equation.Phys. Lett. A, 194 (1994), 246–250. · Zbl 0961.76512 · doi:10.1016/0375-9601(94)91246-7
[12]Dieudonné, J.,Foundations of Modern Analysis. Academic Press, New York, 1969.
[13]Dodd, R. K., Eilbeck, J. C., Gibbon, J. D. &Morris, H. C.,Solitons and Nonlinear Wave Equations. Academic Press, New York, 1984.
[14]Evans, L. &Gariepy, R.,Measure Theory and Fine Properties of Functions. Stud. Adv. Math. CRC Press, Boca Raton, FL, 1992.
[15]Fokas, A. S. &Fuchssteiner, B., Symplectic structures, their Bäcklund transformation and hereditary symmetries.Phys. D, 4 (1981/82), 47–66.
[16]Fuchssteiner, B., Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation.Phys. D, 95 (1996), 229–243. · Zbl 0900.35345 · doi:10.1016/0167-2789(96)00048-6
[17]Glassey, R., Finite-time blow-up for solutions of nonlinear wave equations,Math. Z., 177 (1981), 323–340. · Zbl 0453.35059 · doi:10.1007/BF01162066
[18]Hörmander L.,Lectures on Nonlinear Hyperbolic Differential Equations. Mathématiques & Applications, 26. Springer-Verlag, Berlin, 1997.
[19]–, The lifespan of classical solutions of nonlinear hyperbolic equations, inPseudo-Differential Operators (Oberwolfach, 1986), pp. 214–280. Lecture Notes in Math., 1256. Springer-Verlag, Berlin-New York, 1987.
[20]John, F., Formation of singularities in one-dimensional nonlinear wave propagation.Comm. Pure Appl. Math., 27 (1974), 337–405. · Zbl 0302.35064 · doi:10.1002/cpa.3160270307
[21]–,Nonlinear Wave Equations–Formation of Singularities. Univ. Lecture Ser., Amer. Math. Soc., Providence, RI, 1990.
[22]Kato, T., Blow-up solutions of some nonlinear hyperbolic equations.Comm. Pure Appl. Math., 33 (1980), 501–505. · Zbl 0432.35056 · doi:10.1002/cpa.3160330403
[23]–, Quasi-linear equations of evolution, with applications to partial differential equations, inSpectral Theory and Differential Equations (Dundee, 1974), pp. 25–70. Lecture Notes in Math., 448. Springer-Verlag, Berlin-New York, 1975.
[24]Kenig, C., Ponce, G. &Vega, L., Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle.Comm. Pure Appl. Math., 46 (1993), 527–620. · Zbl 0808.35128 · doi:10.1002/cpa.3160460405
[25]Klainerman, S. &Majda, A., Formation of singularities for wave equations including the nonlinear vibrating string.Comm. Pure Appl. Math., 33 (1980), 241–263. · Zbl 0443.35040 · doi:10.1002/cpa.3160330304
[26]Lax, P., Development of singularities of solutions of nonlinear hyperbolic partial differential equations.J. Math. Phys., 5 (1964), 611–613. · Zbl 0135.15101 · doi:10.1063/1.1704154
[27]Liu, P., Development of singularities in the nonlinear waves for quasilinear hyperbolic partial differential equations.J. Differential Equations, 33 (1979), 92–111. · Zbl 0404.35071 · doi:10.1016/0022-0396(79)90082-2
[28]McKean, H. P., Integrable systems and algebraic curves, inGlobal Analysis (Calgary, 1978), pp. 83–200. Lecture Notes in Math., 755. Springer-Verlag, Berlin, 1979.
[29]Naumkin, P. &Shishmarev, I.,Nonlinear Nonlocal Equations in the Theory of Waves. Transl. Math. Monographs, 133. Amer. Math. Soc., Providence, RI, 1994.
[30]Ostrowski, A.,Vorlesungen über Differential- und Integralrechnung, Vol. III. Birkhäuser, Basel-Stuttgart, 1954.
[31]Schiff, J., Zero curvature formulations of dual hierarchies.J. Math. Phys., 37 (1996), 1928–1938. · Zbl 0863.35093 · doi:10.1063/1.531486
[32]Seliger, R., A note on the breaking of waves.Proc. Roy. Soc. Ser. A, 303 (1968), 493–496. · Zbl 0159.28502 · doi:10.1098/rspa.1968.0063
[33]Sideris, T. C., Formation of singularities in solutions to nonlinear hyperbolic equations.Arch. Rational Mech. Anal., 86 (1984), 369–381. · Zbl 0564.35070 · doi:10.1007/BF00280033
[34]Strauss, W.,Nonlinear Wave Equations. CBMS Regional Conf. Ser. in Math., 73. Amer. Math. Soc., Providence, RI, 1989.
[35]Whitham, G. B.,Linear and Nonlinear Waves. J. Wiley & Sons, New York, 1980.