×

Efficient iterative solution of the three-dimensional Helmholtz equation. (English) Zbl 0929.65089

The authors examine two types of preconditioners for the discrete indefinite Helmholtz equation with Sommerfeld-like boundary conditions. The first is derived by discretization of a related continuous operator, the second uses the block Toeplitz approximation to the desired problem. The resulting preconditioning matrices allow the use of fast transform methods (e.g. fast Fourier transform) and differ from the discrete Helmholtz operator by an operator of low rank. Some numerical experiments presented in the paper demonstrate the efficiency of the method when combined with Krylov subspace iteration. The authors show that the performance of restared GMRES with the proposed preconditioners is relatevely insensitive to the discretization mesh size and the wave number, and the algorithms are highly parallelizable. The presented technique is potentially applicable to inhomogeneous media, exterior domain problems and non-Cartesian grids.

MSC:

65N06 Finite difference methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
65F10 Iterative numerical methods for linear systems
65F35 Numerical computation of matrix norms, conditioning, scaling

Software:

MPI; LAPACK
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Anderson, E., LAPACK Users’ Guide (1995) · Zbl 0755.65028
[2] Barrett, R., Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (1993) · Zbl 0814.65030
[3] Bayliss, A.; Goldstein, C. I.; Turkel, E., An iterative method for the Helmholtz equation, J. Comput. Phys., 49, 443 (1983) · Zbl 0524.65068
[4] Bayliss, A.; Gunzburger, M.; Turkel, E., Boundary conditions for the numerical solution of elliptic equations in exterior domains, SIAM J. Appl. Math., 42, 430 (1982) · Zbl 0479.65056
[5] Bramble, J. H.; Pasciak, J. E.; Xu, J., The analysis of multigrid algorithms for nonsymmetric and indefinite problems, Math. Comp, 51, 389 (1988) · Zbl 0699.65075
[6] Buzbee, B. L.; Dorr, F. W.; George, J. A.; Golub, G. H., The direct solution of the discrete Poisson equation on irregular regions, SIAM J. Numer. Anal, 8, 722 (1971) · Zbl 0231.65083
[7] Cai, X.-C.; Widlund, O. B., Domain decomposition algorithms for indefinite elliptic problems, SIAM J. Sci. Stat. Comput., 13, 243 (1992) · Zbl 0746.65085
[8] Chan, R. H.; Ng, M. K., Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38, 427 (1996) · Zbl 0863.65013
[9] Dautray, R.; Lions, J.-L., Mathematical Analysis and Numerical Methods for Science and Technology, 1 (1990)
[10] Duff, I. S.; Erisman, A. M.; Reid, J. K., Direct Methods for Sparse Matrices (1986) · Zbl 0604.65011
[11] Ernst, O., Fast Numerical Solution of Exterior Helmholtz Problems with Radiation Boundary Condition by Imbedding (1994)
[12] Ernst, O.; Golub, G. H., A domain decomposition approach to solving the Helmholtz equation with a radiation boundary condition, Domain Decomposition in Science and Engineering, 177-192 (1994) · Zbl 0811.65109
[13] Freund, R. W.; Malhotra, M., A block-QMR Algorithm for non-Hermitian linear systems with multiple right hand sides, Linear Algebra Appl., 254, 197 (1997) · Zbl 0873.65021
[14] George, J. A., The Use of Direct Methods for the Solution of the Discrete Poisson Equation on Non-rectangular Regions (1970)
[15] Heikkola, E.; Rossi, T.; Tarvainen, P.; Kuznetsov, Y., Efficient Preconditioners Based on Fictitious Domains for Elliptic fe-Problem with Lagrange Multipliers (1996) · Zbl 0970.65047
[16] Ihlenburg, F.; Babuška, I., Finite element solution of the Helmholtz equation with high wave number. Part I. The h-version of the FEM, Comput. Math. Appl., 30, 9 (1995) · Zbl 0838.65108
[17] Junger, M. C.; Feit, D., Sound, Structures and Their Interaction (1986)
[18] Keller, J. B.; Givoli, D., Exact nonreflecting boundary conditions, J. Comput. Phys., 82, 172 (1989) · Zbl 0671.65094
[19] Kim, S., A parallizable iterative procedure for the Helmholtz problem, Appl. Numer. Math., 14, 435 (1994)
[20] Kim, S., Parallel multidomain iterative algorithms for the Helmholtz wave equation, Appl. Numer. Math., 17, 411 (1995) · Zbl 0838.65119
[21] Malhotra, M.; Pinsky, P. M., Parallel preconditioning based on h-hierarchical finite elements with applications to acoustics, Comput. Methods Appl. Mech. Engrg., 155, 97 (1998) · Zbl 0963.76048
[22] Naiman, A. E.; Babuška, I. M.; Elman, H. C., A note on conjugate gradient convergence, Numer. Math., 76, 209 (1997) · Zbl 0905.65047
[23] O’Leary, D. P.; Widlund, O., Capacitance matrix methods for the Helmholtz equation on general three dimensional regions, Math. Comput., 33, 849 (1979) · Zbl 0407.65047
[24] Proskurowski, W.; Widlund, O., On the numerical solution of Helmholtz’s equation by the capacitance matrix method, Math. Comput., 30, 433 (1976) · Zbl 0332.65057
[25] Saad, Y.; Schultz, M. H., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856 (1986) · Zbl 0599.65018
[26] Snir, M.; Otto, S. W.; Huss-Lederman, S.; Walker, D. W.; Dongarra, J., MPI: The Complete Reference (1996)
[27] Swarztrauber, P.; Sweet, R., Efficient Fortran Subprograms for the Solution of Elliptic Equations (1975)
[29] Van Loan, C., Computational Frameworks for the Fast Fourier Transform (1992) · Zbl 0757.65154
[30] Young, D. M., Iterative Solution of Large Linear Systems (1970)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.