zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Analysis of explosion for nonlinear Volterra equations. (English) Zbl 0932.45007

The author gives a survey of results on Volterra integral equations of the form

u(t)= 0 t k(t-s)r(s)g(u(s)+h(s))ds,t0,

where the solution becomes infinite in finite time. The questions studied in the papers covered by the survey are sufficient conditions to ensure the existence of a blow-up solution, estimates for the time to the singularity and the asymptotic behavior at the singularity. The connections to the related partial differential equations describing various combustion or explosion processes are discussed and some results on the related problem of quenching are mentioned as well.

MSC:
45G05Singular nonlinear integral equations
80A25Combustion, interior ballistics
45M05Asymptotic theory of integral equations