zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Reconstructing volume tracking. (English) Zbl 0933.76069
Summary: A new algorithm for the volume tracking of interfaces in two dimensions is presented. The algorithm is based upon a well-defined, second-order geometric solution of a volume evolution equation. The method utilizes local discrete material volume and velocity data to track interfaces of arbitrarily complex topology. A linearity-preserving, piecewise linear interface geometry approximation ensures that solutions generated retain second-order spatial accuracy. Second-order temporal accuracy is achieved by virtue of a multidimensional unsplit time integration scheme. We detail our geometrically based solution method, in which material volume fluxes are computed systematically with a set of simple geometric tasks. We then interrogate the method by testing its ability to track interfaces through large, controlled topology changes, whereby an initially simple interface configuration is subjected to vortical flows. Numerical results for these strenuous test problems provide evidence for the algorithm’s improved solution quality and accuracy. © Academic Press.
76M25Other numerical methods (fluid mechanics)
76B47Vortex flows