zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Resource-constrained project scheduling: Notation, classification, models, and methods. (English) Zbl 0937.90030
Summary: Project scheduling is concerned with single-item or small batch production where scarce resources have to be allocated to dependent activities over time. Applications can be found in diverse industries such as construction engineering, software development, etc. Also, project scheduling is increasingly important for make-to-order companies where the capacities have been cut down in order to meet lean management concepts. Likewise, project scheduling is very attractive for researchers, because the models in this area are rich and, hence, difficult to solve. For instance, the resource-constrained project scheduling problem contains the job shop scheduling problem as a special case. So far, no classification scheme exists which is compatible with what is commonly accepted in machine scheduling. Also, a variety of symbols are used by project scheduling researchers in order to denote one and the same subject. Hence, there is a gap between machine scheduling on the one hand and project scheduling on the other with respect to both, viz. a common notation and a classification scheme. As a matter of fact, in project scheduling, an ever growing number of papers is going to be published and it becomes more and more difficult for the scientific community to keep track of what is really new and relevant. One purpose of our paper is to close this gap. That is, we provide a classification scheme, i.e. a description of the resource environment, the activity characteristics, and the objective function, respectively, which is compatible with machine scheduling and which allows to classify the most important models dealt with so far. Also, we propose a unifying notation. The second purpose of this paper is to review some of the recent developments. More specifically, we review exact and heuristic algorithms for the single-mode and the multi-mode case, for the time-cost tradeoff problem, for problems with minimum and maximum time lags, for problems with other objectives than makespan minimization and, last but not least, for problems with stochastic activity durations.

90B35Scheduling theory, deterministic