zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exponential dichotomy and trichotomy for difference equations. (English) Zbl 0939.39003

The authors focus their attention on some properties of exponential dichotomy and trichotomy of the linear difference equation


where A(n) is a d×d invertible matrix for each n. Under the assumptions that this equation has an exponential dichotomy or trichotomy and the d×d invertible matrix B(n) is such that A(n)+B(n) is invertible they prove that the perturbed equation


has an exponential dichotomy or trichotomy too, if the norm of B(n) is sufficiently small. This result improves some known result on the invariance of exponential dichotomy and trichotomy under some perturbations because the radius of the perturbation considered in the paper is larger than those known. Besides the equivalence between the exponential dichotomy for linear difference equations with almost periodic coefficients in an infinite integer interval and in a finite sufficiently long integer interval is proved. This statement is a discrete version of the corresponding equivalence for an almost periodic differential equation dx dt=A(t)x.

39A10Additive difference equations
34D09Dichotomy, trichotomy
34C27Almost and pseudo-almost periodic solutions of ODE