zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Analysis of the critical line network for the van der Waals equation at the van Laar point. (English) Zbl 0943.82582
Summary: The density-density plot of the critical lines of the van der Waals equation at the van Laar point is analyzed through its algebraic properties. It is shown that this curve is an irreducible expression of the fifth degree of genus one. In addition, we show the topology of the second branch, i.e., the T=0 solution, which will interact with the first branch as soon as the energy parameters are slightly different from the van Laar values. Finally, we analyze the behavior of the van der Waals equation near the point at which liquid-liquid separation takes place.
82D15Liquids (statistical mechanics)
[1]R. L. Scott and P. H. van Konynenburg,Disc. Faraday Soc. 49:87 (1970); P. H. van Konynenburg and R. L. Scott,Phil. Trans. R. Soc. 298:495 (1980). · doi:10.1039/df9704900087
[2]D. Furman and R. B. Griffiths,Phys. Rev. A 17:1139 (1978). · doi:10.1103/PhysRevA.17.1139
[3]D. J. Korteweg,Arch. N?ere. Sci. Ex. Nat. II VII:235 (1903);K. Akad. Amst. 5:445-465 (1903).
[4]A. van Pelt and Th. W. de Loos,J. Chem. Phys. 97:1271-1281 (1992). · doi:10.1063/1.463253
[5]A. van Pelt, C. J. Peters, and J. de Swaan Arons,J. Chem. Phys. 95:7569-7575 (1991); A. van Pelt, Critical phenomena in binary fluid mixtures; Classification of phase equilibria with the simplified-perturbed-hard-chain theory, Thesis, Technical University of Delft (1992). · doi:10.1063/1.461383
[6]J. J. van Laar,Proc. Sect. Sci. K. Ned. Akad. Wet. 7:646 (1905);8:33 (1905).
[7]E. P. van Emmerik, J. J. van Laar (1860-1938), a mathematical chemist, Thesis, Technical University of Delft (1991).
[8]U. K. Deiters and I. L. Pegg,J. Chem. Phys. 90:6632-6641 (1989). · doi:10.1063/1.456280
[9]P. H. E. Meijer, I. L. Pegg, J. Aronson, and M. Keskin, The critical lines of the van der Waals equation for binary mixtures around the van Laar point,Fluid Phase Equilibria 58:65-80 (1990). · doi:10.1016/0378-3812(90)87005-A
[10]P. H. E. Meijer, The van der Waals equation of state around the van Laar point,J. Chem. Phys. 90:448 (1989). · doi:10.1063/1.456494
[11]Robert J. Walker,Introduction to Algebraic Curves (Princeton University Press, Princeton, New Jersey); W. Fulton and R. Weiss,Algebraic Curves, An Introduction to Algebraic Geometry (Benjamin/Cummins, Menlo Park, California, 1969).
[12]Th. Kraska and U. K. Deiters,J. Chem. Phys. 96:539 (1992). · doi:10.1063/1.462490
[13]J. M. H. Levelt Sengers, Thermodynamics of solutions near the solvent’s critical point, inSupercritical Fluid Technology, Th. J. Bruno and J. F. Ely, eds. (CRC Press, Boca Raton, Florida, 1991), Chapter 1.
[14]C. M. Knobler and R. L. Scott, inPhase Transitions and Critical Phenomena, Vol. 9, C. Domb and J. L. Leibowitz, eds. (Academic Press, 1984), p. 163.
[15]F. E. C. Scheffer,Heterogene Evenwichten in Unaire and Binaire Stelseis, 2nd ed. (Uitg. Waltman, Delft, 1960).