zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the correlation for Kac-like models in the convex case. (English) Zbl 0946.35508
Summary: The aim of this paper is to study the behavior as m tends to of a family of measures exp[-Φ (m) (x)]dx (m) on m , where Φ (m) is a potential on m which is a perturbation “in a suitable sense” of the harmonic potential j x j 2 .

35Q99PDE of mathematical physics and other areas
35B50Maximum principles (PDE)
82B20Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs
[1]J. Avron, I. Herbst, and B. Simon, Schrödinger operators with magnetic fields, III Atoms in homogeneous magnetic fields,Commun. Math. Phys. 79:529–572 (1981). · Zbl 0464.35086 · doi:10.1007/BF01209311
[2]P. Billingsley,Convergence of Probability Measures (Wiley, New York, 1968).
[3]H. J. Brascamp and E. Lieb, On extensions of the Brunn-Minkovski and Prékopa-Leindler Theorems, including inequalities for log concave functions, and with an application to diffusion equation,J. Funct. Anal. 22 (1976).
[4]E. Brézin, Course, ENS (1989).
[5]M. Brunaud and B. Helffer, Un problème de double puits provenant de la théorie statistico-mécanique des changements de phase (ou relecture d’un cours de M. Kac), Preprint (March 1991).
[6]P. Cartier, Inégalités de corrélation en mécanique statistique,Séminaire Bourbaki 25ème année, 1972–73, No. 431 (Lecture Notes in Mathematics, No. 383; Springer-Verlag, Berlin).
[7]R. S. Ellis,Entropy, Large Deviations, and Statistical Mechanics (Springer, New York, 1985).
[8]C. Fortuin, P. Kasteleyn, and J. Ginibre, Correlation inequalities on some partially ordered sets,Commun. Math. Phys. 22:89–103 (1971). · Zbl 0346.06011 · doi:10.1007/BF01651330
[9]J. Glimm and A. Jaffe,Quantum Physics (A Functional Integral Point of View), 2nd ed. (Springer-Verlag, Berlin).
[10]F. Guerra, J. Rosen, and B. Simon, TheP(ϕ)2 Euclidean quantum field theory as classical statistical mechanics,Ann. Math. 101:111–259 (1975). · doi:10.2307/1970988
[11]B. Helffer, On Schrödinger equation in large dimension and connected problems in statistical mechanics, inDifferential Equations with Applications to Mathematical Physics, W. F. Ames, E. M. Harrell II, and J. V. Herod, eds. (Academic Press, New York, 1992), pp. 153–166.
[12]B. Helffer, Around a stationary phase theorem in large dimension,J. Funct. Anal., to appear.
[13]B. Helffer, Problèmes de double puits provenant de la théorie statistico-mécanique des changements de phase, II Modèles de Kac avec champ magnétique, étude de modèles près de la température critique, Preprint (March 1992).
[14]B. Helffer and J. Sjöstrand, Multiple wells in the semi-classical limit, I,Commun. PDE 9(4):337–408 (1984); II,Ann. Inst. H. Poincaré Phys. Theor. 42(2):127–212 (1985). · Zbl 0546.35053 · doi:10.1080/03605308408820335
[15]B. Helffer and J. Sjöstrand, Semiclassical expansions of the thermonamic limit for a Schrödinger equation,Astérisque 210:135–181 (1992).
[16]B. Helffer and J. Sjöstrand, Semiclassical expansions of the thermonamic limit for a Schrödinger equation II,Helv. Phys. Acta 65:748–765 (1992).
[17]M. Kac, Statistical mechanics of some one-dimensional systems, inStudies in Mathematical Analysis and Related Topics: Essays in Honor of Georges Polya (Stanford University Press, Stanford, California, 1962), pp. 165–169.
[18]M. Kac,Mathematical Mechanisms of Phase Transitions (Gordon and Breach, New York, 1966).
[19]D. Robert, Propriétés spectrales d’opérateurs pseudo-différentiels,Commun. PDE 3(9):755–826 (1978). · Zbl 0392.35056 · doi:10.1080/03605307808820077
[20]D. Ruelle,Statistical Mechanics (Benjamin, New York, 1969).
[21]B. Simon,The P(ϕ)2 Euclidean Quantum Field Theory (Princeton University Press, Princeton, New Jersey, 1974).
[22]B. Simon,Functional Integration and Quantum Physics (Academic Press, New York, 1979).
[23]B. Simon,The Statistical Mechanics of Lattice Gases (Princeton University Press, Princeton, New Jersey, 1993).
[24]I. M. Singer, B. Wong, S. T. Yau, and S. S. T. Yau, An estimate of the gap of the first two eigenvalues of the Schrödinger operator,Ann. Scuola Norm. Sup. Pisa (4) 12:319–333 (1985).
[25]J. Sjöstrand, Potential wells in high dimensions I,Ann. Inst. H. Poincaré Phys. Theor. 58(1) (1993).
[26]J. Sjöstrand, Potential wells in high dimensions II, more about the one well case,Ann. Inst. H. Poincaré Phys. Theor. 58(1) (1993).
[27]J. Sjöstrand, Exponential convergence of the first eigenvalue divided by the dimension, for certain sequences of Schrödinger operator,Astérisque 210:303–326 (1992).
[28]J. Sjöstrand, Schrödinger in high dimensions, asymptotic constructions and estimates, inProceeding of the French-Japanese Symposium on Algebraic Analysis and Singular Perturbations (CIRM, Luminy, France, 1991).
[29]J. Sjöstrand, Evolution equations in a large number of variables,Math. Nachr., to appear.
[30]A. D. Sokal, Mean field bounds and correlation inequalities,J. Stat. Phys. 28:431–439 (1982). · doi:10.1007/BF01008316