zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Risk bounds for model selection via penalization. (English) Zbl 0946.62036

The authors develop performance bounds for criteria of model selection, using recent theory for sieves. The model selection criteria are based on an empirical loss or contrast function with an added penalty term roughly proportional to the number of parameters needed to describe the model divided by the number of observations. Most of the presented examples involve density or regression estimation settings, and the authors focus on the problem of estimating the unknown density or regression function.

It is shown that the quadratic risk of the minimum penalized empirical contrast estimator is bounded by an index of the accuracy of the sieve. The connection between model selection via penalization and adaptation in the minimax sense is pointed out. Such illustrations of the introduced method as penalized maximum likelihood, projection or least squares estimation are provided. The models involve commonly used finite dimensional expansions such as piecewise polynomials with fixed or variable knots, trigonometric polynomials, wavelets, neural nets, and related nonlinear expansions defined by superposition of ridge functions.


MSC:
62G05Nonparametric estimation
62G07Density estimation
41A25Rate of convergence, degree of approximation