zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
BIE fracture mechanics analysis: 25 years of developments. (English) Zbl 0946.74073
From the introduction: We review the capabilities of the boundary integral equation (BIE) method for problems in fracture mechanics. The problem class will be limited to static problems of elastic and elastoplastic fracture. The paper draws on the extensive literature that has been developed over the past twenty-five years. Fracture mechanics problems have provided one of the most important applications of BIE formulations in solid mechanics and is one of the principal areas of application of BIE methods. In particular, the paper focuses on the special role played by the Somigliana stress identity in providing algorithms and analytical results for fracture mechanics analysis that are not possible when using the finite element method. Finally, we also identify special problems associated with BIE modeling of cracks, and various strategies that have been developed to successfully treat these problems.
74S15Boundary element methods in solid mechanics
74R10Brittle fracture
74-02Research monographs (mechanics of deformable solids)
74R20Anelastic fracture and damage
[1]Aliabadi, M. H.; Rooke, D. P.; Cartwright, D. J. 1987: An improved boundary element formulation for calculating stress intensity factors: application to aerospace structures, J. Strain Anal. 22: 203-207 · doi:10.1243/03093247V224203
[2]Ang, W. T. 1986: A boundary integral solution for the problem of multiple interacting cracks in an elastic media, Int. J. Frac., 31: 259-270 · doi:10.1007/BF00044049
[3]Annigeri, B. S.; Cleary, M. P. 1984: Surface integral finite element hybrid method for fracture mechanics, Intl. J. Numer. Methods Engrg., 20: 869-885 · Zbl 0528.73074 · doi:10.1002/nme.1620200507
[4]Ayres, D. J. 1970: A numerical procedure for calculating stress and deformation near a slit in a three dimensional elastic plastic solid, Engrg. Fract. Mechs., 2: 87-106 · doi:10.1016/0013-7944(70)90015-9
[5]Barsoum, R. S. 1976: On the use of isoparametric finite elements in linear fracture mechanics, Int. J. Numer. Math. Engrg., 10: 25-37 · Zbl 0321.73067 · doi:10.1002/nme.1620100103
[6]Bentham, J. P. 1977: State of stress at the vertex of a quarter-infinite crack in a half space, Int. J. Solids Struct., 13: 479-492 · Zbl 0364.73089 · doi:10.1016/0020-7683(77)90042-7
[7]Blandford, G. E.; Ingraffea, A. R.; Liggett, J. A. 1981: Two dimensional stress intensity factor computations using the boundary element method, Int. J. Numer. Meth. Engrg., 17: 387-404 · Zbl 0463.73082 · doi:10.1002/nme.1620170308
[8]Bui, H. D. 1977: An integral equations method for solving the problem of a plane crack or arbitrary shape, J. Mechs. Phys. Sol., 25: 29-39 · Zbl 0355.73074 · doi:10.1016/0022-5096(77)90018-7
[9]Bui, H. D. 1978: Some remarks about the formulation of three-dimensional thermoelastoplastic problems by integral equations, Int. J. Solids Struct., 14: 935-939 · Zbl 0384.73008 · doi:10.1016/0020-7683(78)90069-0
[10]Grouch, S. L. 1976: Solution of plane elasticity problems by the displacement discontinuity method, Int. J. Numer. Meth. Engrg., 10: 301-343 · Zbl 0322.73016 · doi:10.1002/nme.1620100206
[11]Crouch, S. L.; Starfield, A. M. 1983: Boundary Element Methods in Solid Mechanics, George Allen & Unwin, London
[12]Cruse, T. A. 1969: Numerical solutions in three-dimensional elastostatics, Intl. J. Solids Struct., 5: 1259-1274 · Zbl 0181.52404 · doi:10.1016/0020-7683(69)90071-7
[13]Cruse, T. A. 1970: Lateral constraint in a cracked, three-dimensional elastic body, Int. J. Frac. Mechs. 6: 326-328
[14]Cruse, T. A.; VanBuren, W. 1971: Three dimensional elastic stress analysis of a fracture specimen with an edge crack, Intl. J. of Fract. Mechs., 7: 1, 1-15
[15]Cruse, T. A. 1972: Numerical evaluation of elastic stress intensity factors by the boundary-integral equation method, in The Surface Crack: Physical Problems and Computational Solutions, ed. J. L. Swedlow, American Society of Mechanical Engineers, 153-170
[16]Cruse, T. A. 1973: Application of the boundary-integral equation method to three dimensional stress analysis, Comp. & Struct., 3: 509-527 · doi:10.1016/0045-7949(73)90094-1
[17]Cruse, T. A. 1974: An improved boundary-integral equation method for three dimensional elastic stress analysis, Comp. & Struct., 4: 741-754 · doi:10.1016/0045-7949(74)90042-X
[18]Cruse, T. A. 1975: Boundary-integral equation method for three dimensional elastic fracture mechanics analysis, U.S. Air Force Report AFOSR-TR-75-0813, Accession No. ADA011660
[19]Cruse, T. A.; Besuner, P. M., 1975: Residual life prediction for surface cracks in complex structural details, AIAA Journal of Aircraft, 12: 369-375 · doi:10.2514/3.44458
[20]Cruse, T. A.; Meyers, G. J., 1977: Three dimensional fracture mechanics analysis, ASCE Journal of the Structural Division, 103: 309-320
[21]Cruse, T. A.; Wilson, R. B. 1978a: Boundary-integral equation method for elastic fracture mechanics analysis, U.S. Air Force Report AFOSR-TR-78-0355, Accession No. ADA051992
[22]Cruse, T. A.; Wilson, R. B., 1978b: Advanced applications of the boundary-integral equation method. Nuclear Engrg. Des., 46: 233-234
[23]Cruse, T. A. 1978: Two-dimensional BIE fracture mechanics analysis, Appl. Math. Modeling, 2: 287-293 · Zbl 0436.73110 · doi:10.1016/0307-904X(78)90023-9
[24]Cruse, T. A.; Polch, E. Z. 1986a: Elastoplastic BIE analysis of cracked plates and related problems, Parts I and II, Int. J. Numer. Meth. Engrg., 23: Part I, 429-437, Part II, 439-452 · Zbl 0583.73072 · doi:10.1002/nme.1620230308
[25]Cruse, T. A.; Polch, E. Z., 1986b. Application of an elastoplastic boundary-element method to some fracture mechanics problems, Engrg. Frac. Mechs., 23: 1085-1096 · doi:10.1016/0013-7944(86)90149-9
[26]Cruse, T. A. 1987: Fracture mechanics, in Boundary Element Methods in Mechanics, ed. D.E. Beskos, Elsevier Science Publishers B.V., The Netherlands: pp. 333-365
[27]Cruse, T. A. 1988a: Boundary Element Analysis in Computational Fracture Mechanics, Kluwer Academic Publishers, Amsterdam
[28]Cruse, T. A. 1988b: Three dimensional elastic surface cracks, in Fracture mechanics: Nineteenth Symposium, ASTM STP 969, ed. by T.A. Cruse, American Society for Testing and Materials, Philadelphia: 19-42
[29]Cruse, T. A.; Raveendra, S. T., 1988a: A general solution procedure for fracture mechanics weight function evaluation based on the boundary element method, Comp. Mechs., 3: 157-166 · Zbl 0631.73081 · doi:10.1007/BF00297442
[30]Cruse, T. A.; Raveendra, S. T. 1988b: A comparison of long and short crack elastoplastic response using the boundary element method, Engrg. Frac. Mechs., 30: 59-75 · doi:10.1016/0013-7944(88)90255-X
[31]Cruse, T. A.; Novati, G. 1992: Traction BIE formulations and applications to nonplaner and multiple cracks, Fracture Mechanics: Twenty-Second Symposium (Vol. II), ASTM STP 1131, ed. S.N. Atluri et al., American Society for Testing and Materials, Philadelphia: 314-332
[32]Cruse, T. A.; Suwito, W. 1993: On the Somigliana stress identity in elasticity, Comp. Mechs., 11: 1-10 · Zbl 0763.73061 · doi:10.1007/BF00370069
[33]Cruse, T. A.; Richardson, J. D. 1996: The non-singular Somigliana stress-BIE, Int. J. Numer. Meth. Engrg., in press
[34]Eshelby, J. D.; Reed, W. T.; Shockley, W., 1957: Anisotropic elasticity with applications to dislocation theory, Acta Metal., 1: 251-259 · doi:10.1016/0001-6160(53)90099-6
[35]Gangming, L.; Youngyuan, Z., 1988: Application of boundary element method with singular and isoparametric elements in three dimensional crack problems, Engrg. Frac. Mechs., 29: 97-106 · doi:10.1016/0013-7944(88)90010-0
[36]Green, A. E.; Sneddon, I. N., 1950: The stress distribution in the neighborhood of a flat elliptical crack in an elastic solid, Proc. Cambridge Phil. Soc., 46: 159-163 · doi:10.1017/S0305004100025585
[37]Griffith, A. A. 1920: The phenomenon of rupture and flow in solids, Phil. Trans. R. Soc., A, 221: 163-198 · doi:10.1098/rsta.1921.0006
[38]Guidera, J. T.; Lardner, R. W., 1975: Penny-shaped cracks, J. Elas., 5: 59-73 · Zbl 0312.73117 · doi:10.1007/BF01389258
[39]Krishnasamy, G.; Rizzo, F. J.; Rudolphi, T. J., 1992: Continuity requirements for density functions in the boundary integral equation method, Comp. Mechs., 9: pp. 267-284 · Zbl 0755.65108 · doi:10.1007/BF00370035
[40]Hack, J. E., Chan, K. S.; Cardinal, J. W., 1985: The prediction of the crack opening behavior of part-through fatigue cracks under the influence of surface residual stresses, Engrg. Fract. Mechs., 21: 75-83 · doi:10.1016/0013-7944(85)90055-4
[41]Heliot, J.; Labbens, R. C. 1979: Results for benchmark problem 1: the surface flaw, Int. J. Fract. 15: R197-R202 · doi:10.1007/BF00019927
[42]Huang, Q.; Cruse, T. A. 1994: On the nonsingular traction-BIE in elasticity, Int. J. Numer. Meth. Engrg., 37: 2041-2072 · Zbl 0832.73076 · doi:10.1002/nme.1620371204
[43]Inglis, C. E., 1913: Stresses in a plate due to the presence of cracks and sharp corners, Proceedings of the Institute of Naval Architects, 60: 219-230
[44]Irwin, G. R. 1957: Analysis of stresses and strains near the end of a crack traversing a plate, J. Appl. Mechs., 24: 361-364
[45]Kim, J.-W. 1985: A contour integral computation of stress intensity factors in the cracked orthotropic elastic plates, Engrg. Fract. Mechs., 21: 353-364 · doi:10.1016/0013-7944(85)90023-2
[46]Lachat, J. C.; Watson, J. O. 1976: Effective numerical treatment of boundary integral equations: a formulation for three-dimensional elastoplastics, Int. J. Numer. Meth. Engrg., 10: 991-1005 · Zbl 0332.73022 · doi:10.1002/nme.1620100503
[47]Li, R.; Chudnovsky, A. 1994: The stress intensity factor Green’s function for a crack interacting with a circular inclusion, Int. J. Fract., 67: 169-177 · doi:10.1007/BF00019602
[48]Martin, P. A. 1982: The discontinuity in the elastostatic displacement vector across a penny-shaped crack under arbitrary loads, J. Elas., 12: 201-218 · Zbl 0512.73089 · doi:10.1007/BF00042216
[49]Melnikov, Yu. A. 1995: Green’s Functions in Applied Mechanics, Computational Mechanics Publications, Southampton UK
[50]Mukherjee, S., 1982: Boundary Element Methods in Creep and Fracture, Applied Science, Essex UK
[51]Polch, E. Z.; Cruse, T. A.; Huang, C.-J. 1987: Traction BIE solutions forflat cracks, Comp. Mechs., 2: 253-267 · Zbl 0616.73093 · doi:10.1007/BF00296420
[52]Putot, C. J., 1980: Une nouvelle methode d’equations integrales pour certains problems de fissures planes, Ph.D. Thesis, University Pierre et Marie Curie, Paris VI
[53]Raveendra, S. T.; Cruse, T. A. 1989: BEM analysis of problems of fracture mechanics, in Industrial Applications of Boundary Element Methods, ed. P. K. Banerjee; R. B. Wilson, Elsevier Applied Science, London, 186-204
[54]Raju, I. S.; Newman, Jr., J. C. 1977: Three dimensional finite element analysis of finite thickness fracture specimens, NASA Technical Note TN D-8414, Washington, D. C.
[55]Rudolphi, T. J.; Koo, L. S. 1985: Boundary element solutions of multiple, interacting crack problems in plane elastic media, Engrg. Anal., 2: 211-216 · doi:10.1016/0264-682X(85)90034-6
[56]Schmitz, H.; Volk, K.; Wendland, W. 1993: Three-dimensional singularities of elastic fields near vertices, Numer. Meth. P. Diff. Eqtns., 9: 323-337 · Zbl 0771.73014 · doi:10.1002/num.1690090309
[57]Sinclair, J. E.; Hirth, J. P. 1975: Two dimensional elastic Green function for a cracked anisotropic body, J. Phys. F Metal Phys., 5: 236-246 · doi:10.1088/0305-4608/5/2/007
[58]Snyder, M. D.; Cruse, T. A. 1975: Boundary-integral equation analysis of cracked anisotropic plates, Intl. J. of Fract. Mechs., 11: 2, 315-328
[59]Stern, M.; Becker, E. B.; Dunham, R. S. 1976: A contour integral computation of mixed-mode stress intensity factors, Int. J. Fract., 12: 359-368
[60]Swedlow, J. L.; Cruse, T. A. 1971: Formulation of the boundary integral equation for three-dimensional elasto-plastic flow, Int. J. Solids Struct., 7: 1673-1683 · Zbl 0228.73040 · doi:10.1016/0020-7683(71)90006-0
[61]Tan, C. L.; Fenner, R. T. 1979: Elastic fracture mechanics analysis by the boundary integral equation method, Proc. R. Soc. Lond. A, 369: 243-260 · Zbl 0441.73108 · doi:10.1098/rspa.1979.0162
[62]Tanaka, M.; Itoh, H. 1987: New crack elements for boundary element analysis of elastostatics considering arbitrary stress singularities, Appl. Math. Model., 11: 357-363 · Zbl 0625.73116 · doi:10.1016/0307-904X(87)90030-8
[63]Telles, J. C. F. 1983: The Boundary Element Method Applied to Inelastic Problems, Vol. 1 in the series Lecture Notes in Engineering, ed. C. Brebbia and S. A. Orzag, Springer-Verlag, Berlin
[64]Tracey, D. M. 1971: Finite elements for determination of crack tip elastic stress intensity factors, Engrg. Fract. Mechs., 3: 255-265 · doi:10.1016/0013-7944(71)90036-1
[65]Williams, M. L. 1952: Stress singularities resulting from various boundary conditions in angular corners of plates in extension, J. Appl. Mechs., 19: 526-528
[66]Weaver, J. 1977: Three dimensional crack analysis, Intl. J. Soc. Struct., 13: 321-330 · Zbl 0373.73093 · doi:10.1016/0020-7683(77)90016-6
[67]Weeën, F. van der, 1983: Mixed mode fracture analysis of rectilinear anisotropic plates using singular boundary elements, Comp. & Struct., 17: 469-474
[68]Xanthis, L. S.; Bernal, M. J. M.; Atkinson, C. 1981: The treatment of singularities in the calculation of stress intensity factors using the boundary integral equation method, Comp. Meth. Appl. Mechs. Engrg., 26: 285-304 · Zbl 0461.73066 · doi:10.1016/0045-7825(81)90118-3