zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Robust stabilizing control laws for a class of second-order switched systems. (English) Zbl 0948.93013
Summary: For a class of second-order switched systems consisting of two linear time-invariant (LTI) subsystems, we show that the so-called conic switching law proposed previously by the present authors is robust, not only in the sense that the control law is flexible (to be explained further), but also in the sense that the Lyapunov stability (resp., Lagrange stability) properties of the switched system are preserved in the presence of certain kinds of vanishing perturbations (resp., nonvanishing perturbations). The analysis is possible since the conic switching laws always possess certain kinds of “quasi-periodic switching operations”. We also propose for a class of nonlinear second-order switched systems with time-invariant subsystems a switching control law which locally exponentially stabilizes the entire nonlinear switched system, provided that the conic switching law exponentially stabilizes the linearized switched systems (consisting of the linearization of each nonlinear subsystem). This switched control law is robust in the sense mentioned above.
93B12Variable structure systems
93D15Stabilization of systems by feedback
93B18Linearizability of systems