zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Generalized elliptic integrals and modular equations. (English) Zbl 0951.33012
Authors’ summary: In geometric function theory, generalized elliptic integrals and functions arise from the Schwarz-Christoffel transformation of the upper half-plane onto a parallelogram and are naturally related to Gaussian hypergeometric functions. Certain combinations of these integrals also occur in analytic number theory in the study of Ramanujan’s modular equations and approximations to π. The authors study the monotonicity and convexity properties of these quantities and obtain sharp inequalities for them.

MSC:
33E05Elliptic functions and integrals
33C05Classical hypergeometric functions, 2 F 1
26D15Inequalities for sums, series and integrals of real functions
11F03Modular and automorphic functions