zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A unified framework for hybrid control: Model and optimal control theory. (English) Zbl 0951.93002

Summary: Complex natural and engineered systems typically possess a hierarchical structure, characterized by continuous variable dynamics at the lowest level and logical decision-making at the highest. Virtually all control systems today – from flight control to the factory floor – perform computer-coded checks and issue logical as well as continuous-variable control commands. The interaction of these different types of dynamics and information leads to a challenging set of “hybrid” control problems. We propose a very general framework that systematizes the notion of a hybrid system, combining differential equations and automata, governed by a hybrid controller that issues continuous-variable commands and makes logical decisions.

We first identify the phenomena that arise in real-world hybrid systems. Then, we introduce a mathematical model of hybrid systems as interacting collections of dynamical systems, evolving on continuous-variable state spaces and subject to continuous controls and discrete transitions. The model captures the identified phenomena, subsumes previous models, yet retains enough structure on which to pose and solve meaningful control problems. We develop a theory for synthesizing hybrid controllers for hybrid plants in an optimal control framework. In particular, we demonstrate the existence ot optimal (relaxed) and near-optimal (precise) controls and derive “generalized quasi-variational inequalities” that the associated value function satisfies. We summarize algorithms for solving these inequalities based on a generalized Bellman equation, impulse control, and linear programming.

MSC:
93A13Hierarchical systems
49L20Dynamic programming method (infinite-dimensional problems)
93A30Mathematical modelling of systems
49J40Variational methods including variational inequalities
90C05Linear programming