zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Filtering on sampled-data systems with parametric uncertainty. (English) Zbl 0951.93050
Summary: This paper is concerned with the problem of robust H filtering for a class of systems with parametric uncertainties and unknown time delays under sampled mensurements. The parameter uncertainties considered here are real time-varying and norm-bounded, appearing in the state equation. An approach has been proposed for the designing of H filters, using sampled measurements, which would guarantee a prescribed H performance in the continuous-time context, irrespective of the parameter uncertainties and unknown time delays. Both cases of finite and infinite horizon filtering are studied. It has been shown that the above robust H -filtering problem can be solved in terms of differential Riccati inequalities with finite discrete jumps.
93C57Sampled-data control systems
93E11Filtering in stochastic control