zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Quantum chaos, symmetry and zeta functions. Lecture I: Quantum chaos, Lecture II: Zeta functions. (English) Zbl 0954.11018
Bott, Raoul (ed.) et al., Current developments in mathematics, 1997. Papers from the conference held in Cambridge, MA, USA, 1997. Boston, MA: International Press. 127-144, 145-159 (1999).

These are survey lectures on a subject which has been given much attention in the physics and number theory literature. Many but not all of the results surveyed are experimental. They concern the statistics of spacings of spectra of operators such as the Laplacian on a manifold as well as the spacings of zeros of many kinds of zeta functions. This subject originates with work of Wigner in the 1950’s who suggested that one should study the spectrum of a random Hermitian matrix as a good approximation to the energy levels of a quantum mechanical system. One arranges the eigenvalues in increasing order and then looks at the differences of adjacent eigenvalues (normalized to have mean spacing 1).

The basic conjecture of the subject says that if the system is completely integrable then the local spacing statistics should be Poisson in the large energy level limit. If the system is chaotic then the local spacing statistics are what is called GOE (Gaussian orthogonal ensemble) if the system has time reversal symmetry and GUE (Gaussian unitary ensemble) otherwise. Here Poisson means the histograms look like e -x , while GOE histograms look like xe -x 2 . The actual distributions for GUE and GOE were found by Gaudin and Mehta. Sarnak notes that the distributions should be viewed as associated with symmetric spaces. Here GOE is associated to GL(n,)/O(n), for example. All of the infinite families of irreducible symmetric spaces of Cartan should actually be considered.

One of the examples for completely integrable Hamiltonians is the case of particles in a box – meaning geodesic motion on a flat 2 dimensional torus 2 /L, where L is a lattice. Here the spectrum consists of numbers 4π 2 |γ| 2 , for γ in the dual lattice. Sarnak has shown that for almost all lattices the pair correlation of the spectrum is Poisson. In the chaotic case there are no examples with explicitly computable spectra. The only rigorous tools are the trace formulas of Selberg, Gutzwiller, ... Numerical experiments lead one to expect that for arithmetic discrete groups Γ acting on the Poincaré upper half plane the level spacings are Poisson, while for non-arithmetic Γ the level spacings appear to be GOE.

In Lecture 2 the focus of attention becomes zeros of zeta-functions such as Riemann’s instead of spectra. Again experimental data such as that of Odlyzko are considered. Of course Selberg’s zeta-function connects the two subjects. Sarnak uses the term “Montgomery-Odlyzko law” to mean that the high zeros of any L-function corresponding to a cuspidal automorphic form on a general linear group should satisfy the GUE local spacing statistics.

New evidence for this law comes from the results of N. Katz and P. Sarnak [Random matrices, Frobenius eigenvalues and monodromy, Am. Math. Soc. (1999)] on the function field analogue of the Riemann zeta function. They proved that the zeta functions of almost all curves over a finite field have GUE level spacing as the size of the field and the genus go to infinity.

MSC:
11F72Spectral theory; Selberg trace formula
11M36Selberg zeta functions and regularized determinants
81Q50Quantum chaos
11-02Research monographs (number theory)