zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Multilinear oscillatory integrals with Calderón-Zygmund kernel. (English) Zbl 0954.42008

The author establishes an L p -boundedness criterion for a class of multilinear oscillatory singular integrals with standard Calderón-Zygmund kernels. Let

R m (A;x,y)=A(x)- |α|<m D α A(y) α!(x-y) α ,
T A 1 ,A 2 f(x)=p.v. n e iP(x,y) K(x,y) |x-y| M-1 j=1 2 R m j (A j ;x,y)f(y)dy,

where M=m 1 +m 2 ; P(x,y) is a real-valued polynomial in x and y; A 1 (x) is a function that satisfies D α A 1 BMO( n ) for all multi-indices α with |α|=m 1 -1; A 2 has derivatives of order m 2 in L s ( n ), 1<s, and K(x,y) is a standard Calderón-Zygmund kernel. The truncated operator S A 1 ,A 2 f(x) is defined by

S A 1 ,A 2 f(x)=p.v. |x-y|<1 K(x,y)|x-y| -M+1 j=1 2 R m j (A j ;x,y)f(y)dy·

The author proved that if P(x,y) satisfies certain conditions, then, for 1/r=1/p+1/s, 1<r, p<,

T A 1 ,A 2 f L r C 1 |α|=m 1 -1 D α A 1 BMO |β|=m 2 D β A 2 L s f L p

if and only if

S A 1 ,A 2 f L r C 2 |α|=m 1 -1 D α A 1 BMO |β|=m 2 D β A 2 L s f L p ,

where C 1 , C 2 are constants depending only on n, p, and deg(P).

This result is also true if r=p, A 2 has derivatives of order m 2 in BMO( n ) and |β|=m 2 D β A 2 L s is replaced by |β|=m 2 D β A 2 BMO .

42B20Singular and oscillatory integrals, several variables
42B30H p -spaces (Fourier analysis)
42B35Function spaces arising in harmonic analysis
[1]Ricci, F., Stein, E. M., Harmonic analysis on nilpotent groups and singular integrals I: oscillatory integral,J. of Funct. Anal., 1987, 73: 179. · Zbl 0622.42010 · doi:10.1016/0022-1236(87)90064-4
[2]Lu, S., Zhang, Y., Criterion onL P-boundedness for a class of oscillatory singular integral with mugh kernel,Rev. Mat. Iberoameriana, 1992, 8: 201.
[3]Chen, W., Hu, G., Lu, S., A criterion of (L p,L r ) boundedness for a of multilinear oscillatory singular integrals,Nagoya Math. J., 1998, 149: 33.
[4]Cohen J, Gosselin, J., A BMO estimate for multilinear singular integrals,Illinois J. of Math., 1985, 30: 445.
[5]Chen, W., Hu, G., Lu, S., On a multilinear oscillatory singular integral operatory I,Chin. Ann. of Math., 1997, 18B (2): 181.