zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Vector variational inequality as a tool for studying vector optimization problems. (English) Zbl 0956.49007
The aim of the paper is to show that the vector variational inequality (VVI) can be an efficient tool for studying vector optimization problems. It is shown that the necessary condition for a weak efficient point of a vector optimization problem with differentiable functions is a VVI. This observation suggests a way to use existing results on variational inequalities for vector optimization problems. Various basic facts on the class of strongly monotone VVI are established: Connectedness and compactness of the solution set. Furthermore, a Hölder-Lipschitz continuity property of the solution set of parametric problems is studied. From this result the authors derive interesting information about vector optimization problems with ϱ-convex functions. Finally, they discuss a useful example of a strongly monotone VVI whose solution set is not a singleton.

49J40Variational methods including variational inequalities
90C29Multi-objective programming; goal programming
90C25Convex programming
90C31Sensitivity, stability, parametric optimization