zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Pseudo-characters and almost multiplicative functionals. (English) Zbl 0958.43001
The main subject studied in the paper under review is the so called stable approximability of the set of characters or continuous characters on a group, i.e. the question whether they can uniformly on G approximate every almost character. Theorem 1 asserts that on an amenable locally compact group every measurable ε-character can uniformly be approximated on G by continuous characters. The logarithms of multiplicative pseudo-characters can be chosen to be some real additive almost characters (Theorem 2) and in Theorem 3 the author shows that the involutive Banach group algebra 1 (G) is an AMNM (i.e. “algebra on which almost multiplicative functionals are near to multiplicative functionals”) if and only if the set of characters on G is stable.
43A07Means on groups, semigroups, etc.; amenable groups