zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A theory of thin films of martensitic materials with applications to microactuators. (English) Zbl 0960.74046
From the summary: We give a direct derivation of a theory for single crystal thin films, starting from three-dimensional nonlinear elasticity augmented by a term for interfacial energy. The derivation involves no a priori choice of asymptotic expansion or ansatz. It yields a frame-indifferent Cosserat membrane theory with one Cosserat vector field. The theory is applied to multi-well energy functions appropriate to martensitic materials. It is found that, unlike in bulk materials, which generally only support finely twinned austenite/martensite interfaces as energy minimizing states, the thin film theory predicts the existence of exact, untwinned austenite/martensite interfaces. These are used to construct some simple energy minimizing deformations – “tents” and “tunnels” – that could possibly be the basis of simple large-deformation microactuators.

74K35Thin films (solid mechanics)
74G65Energy minimization (equilibrium problems in solid mechanics)
74A35Polar materials
74N05Crystals (solid mechanics)